BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 27472301)

  • 21. System with potential dual modes of metal-ligand cooperation: highly catalytically active pyridine-based PNNH-Ru pincer complexes.
    Fogler E; Garg JA; Hu P; Leitus G; Shimon LJ; Milstein D
    Chemistry; 2014 Nov; 20(48):15727-31. PubMed ID: 25331061
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ruthenium(ii) complexes of hemilabile pincer ligands: synthesis and catalysing the transfer hydrogenation of ketones.
    Nair AG; McBurney RT; Walker DB; Page MJ; Gatus MR; Bhadbhade M; Messerle BA
    Dalton Trans; 2016 Sep; 45(36):14335-42. PubMed ID: 27539740
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hydrogen elimination from a hydroxycyclopentadienyl ruthenium(II) hydride: study of hydrogen activation in a ligand-metal bifunctional hydrogenation catalyst.
    Casey CP; Johnson JB; Singer SW; Cui Q
    J Am Chem Soc; 2005 Mar; 127(9):3100-9. PubMed ID: 15740149
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A Proton-Switchable Bifunctional Ruthenium Complex That Catalyzes Nitrile Hydroboration.
    Geri JB; Szymczak NK
    J Am Chem Soc; 2015 Oct; 137(40):12808-14. PubMed ID: 26425797
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Formation of ruthenium carbenes by gem-hydrogen transfer to internal alkynes: implications for alkyne trans-hydrogenation.
    Leutzsch M; Wolf LM; Gupta P; Fuchs M; Thiel W; Farès C; Fürstner A
    Angew Chem Int Ed Engl; 2015 Oct; 54(42):12431-6. PubMed ID: 26332643
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mechanistic investigations into the asymmetric transfer hydrogenation of ketones catalyzed by pseudo-dipeptide ruthenium complexes.
    Wettergren J; Buitrago E; Ryberg P; Adolfsson H
    Chemistry; 2009 Jun; 15(23):5709-18. PubMed ID: 19388029
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Catalytic metal-free ketone hydrogenation: a computational experiment.
    Li H; Zhao L; Lu G; Huang F; Wang ZX
    Dalton Trans; 2010 Jun; 39(23):5519-26. PubMed ID: 20458421
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A Ru-η6-arene complex as a C-based Lewis acid in the activation of hydrogen and hydrogenation catalysis.
    Boone MP; Stephan DW
    J Am Chem Soc; 2013 Jun; 135(23):8508-11. PubMed ID: 23718884
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Distinct Reactivity Modes of a Copper Hydride Enabled by an Intramolecular Lewis Acid.
    Norwine EE; Kiernicki JJ; Zeller M; Szymczak NK
    J Am Chem Soc; 2022 Aug; 144(33):15038-15046. PubMed ID: 35960993
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Catalyst-Free Transfer Hydrogenation from Amine-Borane Small Oligomers.
    Le Moigne L; Posenato T; Gajan D; Lesage de la Haye J; Raynaud J; Lacôte E
    Chemistry; 2024 Jan; 30(1):e202300145. PubMed ID: 37814903
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Brønsted-Lowry Acid Strength of Metal Hydride and Dihydrogen Complexes.
    Morris RH
    Chem Rev; 2016 Aug; 116(15):8588-654. PubMed ID: 26963836
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Parahydrogen-Induced Polarization in Hydrogenation Reactions Mediated by a Metal-Free Catalyst.
    Zakharov DO; Chernichenko K; Sorochkina K; Yang S; Telkki VV; Repo T; Zhivonitko VV
    Chemistry; 2022 Feb; 28(8):e202103501. PubMed ID: 34928532
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Synergistic oxygen atom transfer by ruthenium complexes with non-redox metal ions.
    Lv Z; Zheng W; Chen Z; Tang Z; Mo W; Yin G
    Dalton Trans; 2016 Jul; 45(28):11369-83. PubMed ID: 27333442
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mechanism of asymmetric hydrogenation of acetophenone catalyzed by chiral eta(6)-arene-N-tosylethylenediamine-ruthenium(II) complexes.
    Sandoval CA; Ohkuma T; Utsumi N; Tsutsumi K; Murata K; Noyori R
    Chem Asian J; 2006 Jul; 1(1-2):102-10. PubMed ID: 17441044
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Heterolytic H
    Fong H; Moret ME; Lee Y; Peters JC
    Organometallics; 2013 May; 32(10):3053-3062. PubMed ID: 24000270
    [TBL] [Abstract][Full Text] [Related]  

  • 36. POP-pincer ruthenium complexes: d(6) counterparts of osmium d(4) species.
    Alós J; Bolaño T; Esteruelas MA; Oliván M; Oñate E; Valencia M
    Inorg Chem; 2014 Jan; 53(2):1195-209. PubMed ID: 24405059
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cyclic bent allene hydrido-carbonyl complexes of ruthenium: highly active catalysts for hydrogenation of olefins.
    Pranckevicius C; Fan L; Stephan DW
    J Am Chem Soc; 2015 Apr; 137(16):5582-9. PubMed ID: 25855868
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Selective homogeneous hydrogenation of biogenic carboxylic acids with [Ru(TriPhos)H]+: a mechanistic study.
    Geilen FM; Engendahl B; Hölscher M; Klankermayer J; Leitner W
    J Am Chem Soc; 2011 Sep; 133(36):14349-58. PubMed ID: 21786816
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Enantioselective hydrogenation and transfer hydrogenation of bulky ketones catalysed by a ruthenium complex of a chiral tridentate ligand.
    Díaz-Valenzuela MB; Phillips SD; France MB; Gunn ME; Clarke ML
    Chemistry; 2009; 15(5):1227-32. PubMed ID: 19072967
    [TBL] [Abstract][Full Text] [Related]  

  • 40. From the Lindlar catalyst to supported ligand-modified palladium nanoparticles: selectivity patterns and accessibility constraints in the continuous-flow three-phase hydrogenation of acetylenic compounds.
    Vilé G; Almora-Barrios N; Mitchell S; López N; Pérez-Ramírez J
    Chemistry; 2014 May; 20(20):5926-37. PubMed ID: 24753096
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.