These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 27472431)

  • 1. Label-Free Electrical Detection of Enzymatic Reactions in Nanochannels.
    Duan C; Alibakhshi MA; Kim DK; Brown CM; Craik CS; Majumdar A
    ACS Nano; 2016 Aug; 10(8):7476-84. PubMed ID: 27472431
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrical detection of fast reaction kinetics in nanochannels with an induced flow.
    Schoch RB; Cheow LF; Han J
    Nano Lett; 2007 Dec; 7(12):3895-900. PubMed ID: 17997589
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enzymatic reactivity of glucose oxidase confined in nanochannels.
    Yu J; Zhang Y; Liu S
    Biosens Bioelectron; 2014 May; 55():307-12. PubMed ID: 24412427
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Real-time monitoring of mass-transport-related enzymatic reaction kinetics in a nanochannel-array reactor.
    Li SJ; Wang C; Wu ZQ; Xu JJ; Xia XH; Chen HY
    Chemistry; 2010 Sep; 16(33):10186-94. PubMed ID: 20645335
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Label-free electrical determination of trypsin activity by a silicon-on-insulator based thin film resistor.
    Neff PA; Serr A; Wunderlich BK; Bausch AR
    Chemphyschem; 2007 Oct; 8(14):2133-7. PubMed ID: 17722222
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanofluidic devices prepared by an atomic force microscopy-based single-scratch approach.
    Yan Y; Wang J; Chang S; Geng Y; Chen L; Gan Y
    RSC Adv; 2019 Nov; 9(66):38814-38821. PubMed ID: 35540223
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of the surface functionalization and the electrolyte concentration on the electrical conductance of silica nanochannels.
    Martins DC; Chu V; Conde JP
    Biomicrofluidics; 2013; 7(3):34111. PubMed ID: 24404031
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of biological reactions and modifications on conductance of nanofluidic channels.
    Karnik R; Castelino K; Fan R; Yang P; Majumdar A
    Nano Lett; 2005 Sep; 5(9):1638-42. PubMed ID: 16159198
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Temperature sensitivity of nanochannel electrical conductance.
    Taghipoor M; Bertsch A; Renaud P
    ACS Nano; 2015 Apr; 9(4):4563-71. PubMed ID: 25844887
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phosphoprotein Detection with a Single Nanofluidic Diode Decorated with Zinc Chelates.
    Nasir S; Ali M; Ahmed I; Niemeyer CM; Ensinger W
    Chempluschem; 2020 Mar; 85(3):587-594. PubMed ID: 32216097
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Study on the kinetics of homogeneous enzyme reactions in a micro/nanofluidics device.
    Wang C; Li SJ; Wu ZQ; Xu JJ; Chen HY; Xia XH
    Lab Chip; 2010 Mar; 10(5):639-46. PubMed ID: 20162240
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A nanochannel array-based electrochemical device for quantitative label-free DNA analysis.
    Li SJ; Li J; Wang K; Wang C; Xu JJ; Chen HY; Xia XH; Huo Q
    ACS Nano; 2010 Nov; 4(11):6417-24. PubMed ID: 20958077
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetics of Enzymatic Reactions at the Solid/Liquid Interface in Nanofluidic Channels.
    Yamamoto K; Morikawa K; Imanaka H; Imamura K; Kitamori T
    Anal Chem; 2022 Nov; 94(45):15686-15694. PubMed ID: 36315424
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ion diffusion coefficient measurements in nanochannels at various concentrations.
    Wang J; Zhang L; Xue J; Hu G
    Biomicrofluidics; 2014 Mar; 8(2):024118. PubMed ID: 24803967
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ion transport in graphene nanofluidic channels.
    Xie Q; Xin F; Park HG; Duan C
    Nanoscale; 2016 Dec; 8(47):19527-19535. PubMed ID: 27878192
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface enzyme kinetics for biopolymer microarrays: a combination of Langmuir and Michaelis-Menten concepts.
    Lee HJ; Wark AW; Goodrich TT; Fang S; Corn RM
    Langmuir; 2005 Apr; 21(9):4050-7. PubMed ID: 15835973
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interfacial biocatalysis on charged and immobilized substrates: the roles of enzyme and substrate surface charge.
    Feller BE; Kellis JT; Cascão-Pereira LG; Robertson CR; Frank CW
    Langmuir; 2011 Jan; 27(1):250-63. PubMed ID: 21128607
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Immobilization of the enzyme beta-lactamase on biotin-derivatized poly(L-lysine)-g-poly(ethylene glycol)-coated sensor chips: a study on oriented attachment and surface activity by enzyme kinetics and in situ optical sensing.
    Zhen G; Eggli V; Vörös J; Zammaretti P; Textor M; Glockshuber R; Kuennemann E
    Langmuir; 2004 Nov; 20(24):10464-73. PubMed ID: 15544374
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Disposable Fluidic Devices of Bionanochannels for Enzymatic Monitoring and Energy Harvesting.
    Konch TJ; Bora AP; Raidongia K
    ACS Appl Bio Mater; 2019 Jun; 2(6):2549-2556. PubMed ID: 35030709
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Super-assembled mesoporous thin films with asymmetric nanofluidic channels for sensitive and reversible electrical sensing.
    Zeng H; Zhou S; Xie L; Liang Q; Zhang X; Yan M; Huang Y; Liu T; Chen P; Zhang L; Liang K; Jiang L; Kong B
    Biosens Bioelectron; 2023 Feb; 222():114985. PubMed ID: 36493724
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.