These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 27472601)

  • 1. Light scattering by irregular particles much larger than the wavelength with wavelength-scale surface roughness.
    Grynko Y; Shkuratov Y; Förstner J
    Opt Lett; 2016 Aug; 41(15):3491-4. PubMed ID: 27472601
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Light scattering by randomly irregular dielectric particles larger than the wavelength.
    Grynko Y; Shkuratov Y; Förstner J
    Opt Lett; 2013 Dec; 38(23):5153-6. PubMed ID: 24281533
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of a discontinuous Galerkin time domain method to simulation of optical properties of dielectric particles.
    Tang G; Panetta RL; Yang P
    Appl Opt; 2010 May; 49(15):2827-40. PubMed ID: 20490244
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effective equivalence of geometric irregularity and surface roughness in determining particle single-scattering properties.
    Liu C; Panetta RL; Yang P
    Opt Express; 2014 Sep; 22(19):23620-7. PubMed ID: 25321828
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wavelength and angular dependence of light scattering from beryllium: comparison of theory and experiment.
    Elson JM; Bennett JM; Stover JC
    Appl Opt; 1993 Jul; 32(19):3362-76. PubMed ID: 20829955
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Examination of surface roughness on light scattering by long ice columns by use of a two-dimensional finite-difference time-domain algorithm.
    Sun W; Loeb NG; Videen G; Fu Q
    Appl Opt; 2004 Mar; 43(9):1957-64. PubMed ID: 15065727
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Research on Properties of Light Scattering for Non-Spherical Suspended Particles in Water Based on T Matrix Model].
    Vo QS; Feng P; Mi DL; Tang B; Wei B
    Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Oct; 35(10):2691-6. PubMed ID: 26904801
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling optical properties of mineral aerosol particles by using nonsymmetric hexahedra.
    Bi L; Yang P; Kattawar GW; Kahn R
    Appl Opt; 2010 Jan; 49(3):334-42. PubMed ID: 20090797
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Light scattering from periodic rough cylindrical surfaces.
    Fan YY; Huynh VM
    Appl Opt; 1993 Jul; 32(19):3452-8. PubMed ID: 20829965
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intensity surge and negative polarization of light from compact irregular particles.
    Grynko Y; Shkuratov Y; Förstner J
    Opt Lett; 2018 Aug; 43(15):3562-3565. PubMed ID: 30067710
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coherent and incoherent backscattering by a single large particle of irregular shape.
    Shishko V; Konoshonkin A; Kustova N; Timofeev D; Borovoi A
    Opt Express; 2019 Nov; 27(23):32984-32993. PubMed ID: 31878373
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dipolar unit size in coupled-dipole calculations of the scattering matrix elements.
    Hoekstra AG; Sloot PM
    Opt Lett; 1993 Aug; 18(15):1211-3. PubMed ID: 19823335
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Applicability of regular particle shapes in light scattering calculations for atmospheric ice particles.
    Macke A; Mishchenko MI
    Appl Opt; 1996 Jul; 35(21):4291-6. PubMed ID: 21102838
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Scattering of light by polydisperse, randomly oriented, finite circular cylinders.
    Mishchenko MI; Travis LD; Macke A
    Appl Opt; 1996 Aug; 35(24):4927-40. PubMed ID: 21102919
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Numerical reproduction and explanation of road surface mirages under grazing-angle scattering.
    Lu J; Zhou H
    Appl Opt; 2017 Jul; 56(19):5550-5558. PubMed ID: 29047516
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measurement of roughness based on the Talbot effect in reflection from rough surfaces.
    Dashtdar M; Mohammadzade A; Hosseini-Saber SM
    Appl Opt; 2015 Jun; 54(16):5210-5. PubMed ID: 26192685
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Perturbation approach for light scattering by an ensemble of irregular particles of arbitrary material.
    Schiffer R
    Appl Opt; 1990 Apr; 29(10):1536-50. PubMed ID: 20563038
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling the scattering properties of mineral aerosols using concave fractal polyhedra.
    Liu C; Panetta RL; Yang P; Macke A; Baran AJ
    Appl Opt; 2013 Feb; 52(4):640-52. PubMed ID: 23385901
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analytical model for radiative transfer including the effects of a rough material interface.
    Giddings TE; Kellems AR
    Appl Opt; 2016 Aug; 55(24):6606-16. PubMed ID: 27556978
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Discontinuous Galerkin time domain analysis of electromagnetic scattering from dispersive periodic nanostructures at oblique incidence.
    Bao H; Kang L; Campbell SD; Werner DH
    Opt Express; 2019 Apr; 27(9):13116-13128. PubMed ID: 31052841
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.