These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 27472890)

  • 1. Molecular cloning and functional characterization of DkMATE1 involved in proanthocyanidin precursor transport in persimmon (Diospyros kaki Thunb.) fruit.
    Yang S; Jiang Y; Xu L; Shiratake K; Luo Z; Zhang Q
    Plant Physiol Biochem; 2016 Nov; 108():241-250. PubMed ID: 27472890
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DkMyb4 is a Myb transcription factor involved in proanthocyanidin biosynthesis in persimmon fruit.
    Akagi T; Ikegami A; Tsujimoto T; Kobayashi S; Sato A; Kono A; Yonemori K
    Plant Physiol; 2009 Dec; 151(4):2028-45. PubMed ID: 19783643
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Isolation and characterization of a laccase gene potentially involved in proanthocyanidin polymerization in Oriental persimmon (Diospyros kaki Thunb.) fruit.
    Hu Q; Luo C; Zhang Q; Luo Z
    Mol Biol Rep; 2013 Apr; 40(4):2809-20. PubMed ID: 23224657
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Expression balances of structural genes in shikimate and flavonoid biosynthesis cause a difference in proanthocyanidin accumulation in persimmon (Diospyros kaki Thunb.) fruit.
    Akagi T; Ikegami A; Suzuki Y; Yoshida J; Yamada M; Sato A; Yonemori K
    Planta; 2009 Oct; 230(5):899-915. PubMed ID: 19669159
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of a gene regulatory network underlying astringency loss in persimmon fruit.
    Nishiyama S; Onoue N; Kono A; Sato A; Yonemori K; Tao R
    Planta; 2018 Mar; 247(3):733-743. PubMed ID: 29188374
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DkMyb2 wound-induced transcription factor of persimmon (Diospyros kaki Thunb.), contributes to proanthocyanidin regulation.
    Akagi T; Ikegami A; Yonemori K
    Planta; 2010 Oct; 232(5):1045-59. PubMed ID: 20690029
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DkMYB14 is a bifunctional transcription factor that regulates the accumulation of proanthocyanidin in persimmon fruit.
    Chen W; Zheng Q; Li J; Liu Y; Xu L; Zhang Q; Luo Z
    Plant J; 2021 Jun; 106(6):1708-1727. PubMed ID: 33835602
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DkmiR397 Regulates Proanthocyanidin Biosynthesis via Negative Modulating
    Zaman F; Zhang M; Liu Y; Wang Z; Xu L; Guo D; Luo Z; Zhang Q
    Int J Mol Sci; 2022 Mar; 23(6):. PubMed ID: 35328620
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DkWRKY interacts with pyruvate kinase gene DkPK1 and promotes natural deastringency in C-PCNA persimmon.
    Guan C; Wang M; Zhang Y; Ruan X; Zhang Q; Luo Z; Yang Y
    Plant Sci; 2020 Jan; 290():110285. PubMed ID: 31779905
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Seasonal abscisic acid signal and a basic leucine zipper transcription factor, DkbZIP5, regulate proanthocyanidin biosynthesis in persimmon fruit.
    Akagi T; Katayama-Ikegami A; Kobayashi S; Sato A; Kono A; Yonemori K
    Plant Physiol; 2012 Feb; 158(2):1089-102. PubMed ID: 22190340
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of seasonal temperature changes on DkMyb4 expression involved in proanthocyanidin regulation in two genotypes of persimmon (Diospyros kaki Thunb.) fruit.
    Akagi T; Tsujimoto T; Ikegami A; Yonemori K
    Planta; 2011 May; 233(5):883-94. PubMed ID: 21225280
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcriptomic profiling analysis to identify genes associated with PA biosynthesis and insolubilization in the late stage of fruit development in C-PCNA persimmon.
    Wang Y; Zhang Q; Pu T; Suo Y; Han W; Diao S; Li H; Sun P; Fu J
    Sci Rep; 2022 Nov; 12(1):19140. PubMed ID: 36352175
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Involvement of DkTGA1 Transcription Factor in Anaerobic Response Leading to Persimmon Fruit Postharvest De-Astringency.
    Zhu QG; Wang MM; Gong ZY; Fang F; Sun NJ; Li X; Grierson D; Yin XR; Chen KS
    PLoS One; 2016; 11(5):e0155916. PubMed ID: 27196670
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ethylene-responsive transcription factors interact with promoters of ADH and PDC involved in persimmon (Diospyros kaki) fruit de-astringency.
    Min T; Yin XR; Shi YN; Luo ZR; Yao YC; Grierson D; Ferguson IB; Chen KS
    J Exp Bot; 2012 Nov; 63(18):6393-405. PubMed ID: 23095993
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative Metabolomic and Transcriptomic Analyses Reveal Distinct Ascorbic Acid (AsA) Accumulation Patterns between PCA and PCNA Persimmon Developing Fruit.
    Wang Y; Diao S; Li H; Ye L; Suo Y; Zheng Y; Sun P; Han W; Fu J
    Int J Mol Sci; 2023 Oct; 24(20):. PubMed ID: 37895041
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular identification of 1-Cys peroxiredoxin and anthocyanidin/flavonol 3-O-galactosyltransferase from proanthocyanidin-rich young fruits of persimmon (Diospyros kaki Thunb.).
    Ikegami A; Akagi T; Potter D; Yamada M; Sato A; Yonemori K; Kitajima A; Inoue K
    Planta; 2009 Sep; 230(4):841-55. PubMed ID: 19641937
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification and characterization of microRNAs from Chinese pollination constant non-astringent persimmon using high-throughput sequencing.
    Luo Y; Zhang X; Luo Z; Zhang Q; Liu J
    BMC Plant Biol; 2015 Jan; 15():11. PubMed ID: 25604351
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genome-wide transcriptome analysis of Chinese pollination-constant nonastringent persimmon fruit treated with ethanol.
    Luo C; Zhang Q; Luo Z
    BMC Genomics; 2014 Feb; 15():112. PubMed ID: 24507483
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MATE transporters facilitate vacuolar uptake of epicatechin 3'-O-glucoside for proanthocyanidin biosynthesis in Medicago truncatula and Arabidopsis.
    Zhao J; Dixon RA
    Plant Cell; 2009 Aug; 21(8):2323-40. PubMed ID: 19684242
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preferential transport activity of DkDTX5/MATE5 affects the formation of different astringency in persimmon.
    Liu Y; Wu X; Sun C; Chen W; Zhang M; Liu N; Zhang Q; Xu L; Luo Z
    J Integr Plant Biol; 2023 Oct; 65(10):2304-2319. PubMed ID: 37526209
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.