BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 27472914)

  • 1. Electrical Detection of Single Graphene Plasmons.
    Yu R; García de Abajo FJ
    ACS Nano; 2016 Aug; 10(8):8045-53. PubMed ID: 27472914
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct On-Chip Optical Plasmon Detection with an Atomically Thin Semiconductor.
    Goodfellow KM; Chakraborty C; Beams R; Novotny L; Vamivakas AN
    Nano Lett; 2015 Aug; 15(8):5477-81. PubMed ID: 26120877
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Study of graphene plasmons in graphene-MoS
    Liu R; Liao B; Guo X; Hu D; Hu H; Du L; Yu H; Zhang G; Yang X; Dai Q
    Nanoscale; 2017 Jan; 9(1):208-215. PubMed ID: 27906405
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantum Effects in the Nonlinear Response of Graphene Plasmons.
    Cox JD; Silveiro I; García de Abajo FJ
    ACS Nano; 2016 Feb; 10(2):1995-2003. PubMed ID: 26718484
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plasmon excitation on flat graphene by s-polarized beams using four-wave mixing.
    Tao J; Dong Z; Yang JK; Wang QJ
    Opt Express; 2015 Mar; 23(6):7809-19. PubMed ID: 25837120
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nonlinear Graphene Nanoplasmonics.
    Cox JD; García de Abajo FJ
    Acc Chem Res; 2019 Sep; 52(9):2536-2547. PubMed ID: 31448890
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Resonant terahertz detection using graphene plasmons.
    Bandurin DA; Svintsov D; Gayduchenko I; Xu SG; Principi A; Moskotin M; Tretyakov I; Yagodkin D; Zhukov S; Taniguchi T; Watanabe K; Grigorieva IV; Polini M; Goltsman GN; Geim AK; Fedorov G
    Nat Commun; 2018 Dec; 9(1):5392. PubMed ID: 30568184
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact excitation and electron-hole multiplication in graphene and carbon nanotubes.
    Gabor NM
    Acc Chem Res; 2013 Jun; 46(6):1348-57. PubMed ID: 23369453
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optical nano-imaging of gate-tunable graphene plasmons.
    Chen J; Badioli M; Alonso-González P; Thongrattanasiri S; Huth F; Osmond J; Spasenović M; Centeno A; Pesquera A; Godignon P; Elorza AZ; Camara N; García de Abajo FJ; Hillenbrand R; Koppens FH
    Nature; 2012 Jul; 487(7405):77-81. PubMed ID: 22722861
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Applied optics. Gain modulation by graphene plasmons in aperiodic lattice lasers.
    Chakraborty S; Marshall OP; Folland TG; Kim YJ; Grigorenko AN; Novoselov KS
    Science; 2016 Jan; 351(6270):246-8. PubMed ID: 26816373
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermoelectric detection and imaging of propagating graphene plasmons.
    Lundeberg MB; Gao Y; Woessner A; Tan C; Alonso-González P; Watanabe K; Taniguchi T; Hone J; Hillenbrand R; Koppens FH
    Nat Mater; 2017 Feb; 16(2):204-207. PubMed ID: 27643730
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiple excitation of confined graphene plasmons by single free electrons.
    Garcıía de Abajo FJ
    ACS Nano; 2013 Dec; 7(12):11409-19. PubMed ID: 24219514
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nonlinear Terahertz Absorption of Graphene Plasmons.
    Jadidi MM; König-Otto JC; Winnerl S; Sushkov AB; Drew HD; Murphy TE; Mittendorff M
    Nano Lett; 2016 Apr; 16(4):2734-8. PubMed ID: 26978242
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental observed plasmon near-field response in isolated suspended graphene resonators.
    Zhang N; Jiang X; Fan J; Luo W; Xiang Y; Wu W; Ren M; Zhang X; Cai W; Xu J
    Nanotechnology; 2019 Dec; 30(50):505201. PubMed ID: 31491784
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plasmonics in atomically thin materials.
    García de Abajo FJ; Manjavacas A
    Faraday Discuss; 2015; 178():87-107. PubMed ID: 25774774
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strong modulation of plasmons in Graphene with the use of an Inverted pyramid array diffraction grating.
    Matthaiakakis N; Mizuta H; Charlton MD
    Sci Rep; 2016 Jun; 6():27550. PubMed ID: 27278301
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single-Plasmon Thermo-Optical Switching in Graphene.
    Cox JD; García de Abajo FJ
    Nano Lett; 2019 Jun; 19(6):3743-3750. PubMed ID: 31117754
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coexistence of two graphene-induced modulation effects on surface plasmons in hybrid graphene plasmonic nanostructures.
    Zhang ZY; Li DM; Zhang H; Wang W; Zhu YH; Zhang S; Zhang XP; Yi JM
    Opt Express; 2019 Apr; 27(9):13503-13515. PubMed ID: 31052871
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly confined low-loss plasmons in graphene-boron nitride heterostructures.
    Woessner A; Lundeberg MB; Gao Y; Principi A; Alonso-González P; Carrega M; Watanabe K; Taniguchi T; Vignale G; Polini M; Hone J; Hillenbrand R; Koppens FH
    Nat Mater; 2015 Apr; 14(4):421-5. PubMed ID: 25532073
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantum finite-size effects in graphene plasmons.
    Thongrattanasiri S; Manjavacas A; García de Abajo FJ
    ACS Nano; 2012 Feb; 6(2):1766-75. PubMed ID: 22217250
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.