These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 27473115)
21. Hollow α-MnS Spheres and Their Hybrids with Reduced Graphene Oxide: Synthesis, Microwave Absorption, and Lithium Storage Properties. Chen D; Quan H; Wang GS; Guo L Chempluschem; 2013 Aug; 78(8):843-851. PubMed ID: 31986681 [TBL] [Abstract][Full Text] [Related]
22. Facile synthesis of nickel/carbon nanotubes hybrid derived from metal organic framework as a lightweight, strong and efficient microwave absorber. Qiu Y; Yang H; Wen B; Ma L; Lin Y J Colloid Interface Sci; 2021 May; 590():561-570. PubMed ID: 33581659 [TBL] [Abstract][Full Text] [Related]
23. Constructing a nitrogen-doped carbon and nickel composite derived from a mixed ligand nickel-based a metal-organic framework toward adjustable microwave absorption. Qiu Y; Yang H; Cheng Y; Bai X; Wen B; Lin Y Nanoscale; 2021 May; 13(20):9204-9216. PubMed ID: 33978024 [TBL] [Abstract][Full Text] [Related]
24. Facile synthesis of BaTiO3 nanotubes and their microwave absorption properties. Zhu YF; Zhang L; Natsuki T; Fu YQ; Ni QQ ACS Appl Mater Interfaces; 2012 Apr; 4(4):2101-6. PubMed ID: 22409350 [TBL] [Abstract][Full Text] [Related]
25. Bio-inspired fabrication of hierarchical Ni-Fe-P coated skin collagen fibers for high-performance microwave absorption. Wang X; Liao X; Zhang W; Shi B Phys Chem Chem Phys; 2015 Jan; 17(3):2113-20. PubMed ID: 25484199 [TBL] [Abstract][Full Text] [Related]
26. Microwave Absorption Properties of Magnetite Particles Extracted from Nickel Slag. Yan P; Shen Y; Du X; Chong J Materials (Basel); 2020 May; 13(9):. PubMed ID: 32392790 [TBL] [Abstract][Full Text] [Related]
27. Trimetallic FeCoNi@C Nanocomposite Hollow Spheres Derived from Metal-Organic Frameworks with Superior Electromagnetic Wave Absorption Ability. Ouyang J; He Z; Zhang Y; Yang H; Zhao Q ACS Appl Mater Interfaces; 2019 Oct; 11(42):39304-39314. PubMed ID: 31554393 [TBL] [Abstract][Full Text] [Related]
28. Multiphase Molybdenum Carbide Doped Carbon Hollow Sphere Engineering: The Superiority of Unique Double-Shell Structure in Microwave Absorption. Zhao T; Jia Z; Zhang Y; Wu G Small; 2023 Feb; 19(6):e2206323. PubMed ID: 36436944 [TBL] [Abstract][Full Text] [Related]
29. Microwave permittivity, permeability, and absorption of Ni nanoplatelet composites. Huang J; Qin Y; Li J; Jiang X; Ma F J Nanosci Nanotechnol; 2008 Aug; 8(8):3967-72. PubMed ID: 19049159 [TBL] [Abstract][Full Text] [Related]
30. A novel sponge-like 2D Ni/derivative heterostructure to strengthen microwave absorption performance. Zhao B; Zhang X; Deng J; Bai Z; Liang L; Li Y; Zhang R Phys Chem Chem Phys; 2018 Nov; 20(45):28623-28633. PubMed ID: 30406240 [TBL] [Abstract][Full Text] [Related]
31. Dependency of magnetic microwave absorption on surface architecture of Co20Ni80 hierarchical structures studied by electron holography. Liu Q; Xu X; Xia W; Che R; Chen C; Cao Q; He J Nanoscale; 2015 Feb; 7(5):1736-43. PubMed ID: 25515025 [TBL] [Abstract][Full Text] [Related]
32. Excellent microwave absorption performances of high length-diameter ratio iron nanowires with low filling ratio. Yang PA; Ruan H; Sun Y; Li R; Lu Y; Xiang C Nanotechnology; 2020 Sep; 31(39):395708. PubMed ID: 32544893 [TBL] [Abstract][Full Text] [Related]
33. Constructing Two-, Zero-, and One-Dimensional Integrated Nanostructures: an Effective Strategy for High Microwave Absorption Performance. Sun Y; Xu J; Qiao W; Xu X; Zhang W; Zhang K; Zhang X; Chen X; Zhong W; Du Y ACS Appl Mater Interfaces; 2016 Nov; 8(46):31878-31886. PubMed ID: 27805359 [TBL] [Abstract][Full Text] [Related]
34. Enhanced Electromagnetic Wave Absorption Properties of Ultrathin MnO Qu Z; Wang Y; Yang P; Zheng W; Li N; Bai J; Zhang Y; Li K; Wang D; Liu Z; Yao K; Li R; Zhang Y Molecules; 2021 Dec; 27(1):. PubMed ID: 35011367 [TBL] [Abstract][Full Text] [Related]
35. Fabrication of ultralight nitrogen-doped reduced graphene oxide/nickel ferrite composite foams with three-dimensional porous network structure as ultrathin and high-performance microwave absorbers. Deng L; Shu R; Zhang J J Colloid Interface Sci; 2022 May; 614():110-119. PubMed ID: 35091140 [TBL] [Abstract][Full Text] [Related]
36. Simple fabrication of cobalt-nickel alloy/carbon nanocomposite fibers for tunable microwave absorption. Hu J; Jiao Z; Jiang J; Hou Y; Su X; Zhang J; Feng C; Ma Y; Ma M; Liu J J Colloid Interface Sci; 2023 Dec; 652(Pt B):1825-1835. PubMed ID: 37683410 [TBL] [Abstract][Full Text] [Related]
37. Effect of Reaction Time on Microwave Absorption Properties of Fe Huang W; Wang Y; Wei S; Wang B; Liang Y; Huang Y; Xu B Materials (Basel); 2019 Sep; 12(18):. PubMed ID: 31509967 [TBL] [Abstract][Full Text] [Related]
39. Biomass carbon derived from pine nut shells decorated with NiO nanoflakes for enhanced microwave absorption properties. Wang H; Zhang Y; Wang Q; Jia C; Cai P; Chen G; Dong C; Guan H RSC Adv; 2019 Mar; 9(16):9126-9135. PubMed ID: 35517669 [TBL] [Abstract][Full Text] [Related]
40. Polyvinylpyrrolidone induced uniform coating of nickel nanoparticles on carbon nanotubes for efficient microwave absorption. Sun H; Yi SQ; Li N; Zou KK; Li J; Xu L; Wang YY; Yan DX; Li ZM J Colloid Interface Sci; 2023 Nov; 649():501-509. PubMed ID: 37356151 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]