These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
160 related articles for article (PubMed ID: 27473279)
1. Solid Lipid Nanoparticle assemblies (SLNas) for an anti-TB inhalation treatment-A Design of Experiments approach to investigate the influence of pre-freezing conditions on the powder respirability. Maretti E; Rustichelli C; Romagnoli M; Balducci AG; Buttini F; Sacchetti F; Leo E; Iannuccelli V Int J Pharm; 2016 Sep; 511(1):669-679. PubMed ID: 27473279 [TBL] [Abstract][Full Text] [Related]
2. Surface engineering of Solid Lipid Nanoparticle assemblies by methyl α-d-mannopyranoside for the active targeting to macrophages in anti-tuberculosis inhalation therapy. Maretti E; Costantino L; Rustichelli C; Leo E; Croce MA; Buttini F; Truzzi E; Iannuccelli V Int J Pharm; 2017 Aug; 528(1-2):440-451. PubMed ID: 28624659 [TBL] [Abstract][Full Text] [Related]
3. Newly synthesized surfactants for surface mannosylation of respirable SLN assemblies to target macrophages in tuberculosis therapy. Maretti E; Costantino L; Buttini F; Rustichelli C; Leo E; Truzzi E; Iannuccelli V Drug Deliv Transl Res; 2019 Feb; 9(1):298-310. PubMed ID: 30484257 [TBL] [Abstract][Full Text] [Related]
4. Rifampicin loaded chitosan nanoparticle dry powder presents an improved therapeutic approach for alveolar tuberculosis. Rawal T; Parmar R; Tyagi RK; Butani S Colloids Surf B Biointerfaces; 2017 Jun; 154():321-330. PubMed ID: 28363192 [TBL] [Abstract][Full Text] [Related]
5. Spray freeze drying for dry powder inhalation of nanoparticles. Ali ME; Lamprecht A Eur J Pharm Biopharm; 2014 Aug; 87(3):510-7. PubMed ID: 24657824 [TBL] [Abstract][Full Text] [Related]
6. Effect of freeze-drying, cryoprotectants and storage conditions on the stability of secondary structure of insulin-loaded solid lipid nanoparticles. Soares S; Fonte P; Costa A; Andrade J; Seabra V; Ferreira D; Reis S; Sarmento B Int J Pharm; 2013 Nov; 456(2):370-81. PubMed ID: 24036086 [TBL] [Abstract][Full Text] [Related]
7. Ethambutol-Loaded Solid Lipid Nanoparticles as Dry Powder Inhalable Formulation for Tuberculosis Therapy. Nemati E; Mokhtarzadeh A; Panahi-Azar V; Mohammadi A; Hamishehkar H; Mesgari-Abbasi M; Ezzati Nazhad Dolatabadi J; de la Guardia M AAPS PharmSciTech; 2019 Feb; 20(3):120. PubMed ID: 30796625 [TBL] [Abstract][Full Text] [Related]
8. High dose dry powder inhalers to overcome the challenges of tuberculosis treatment. Momin MAM; Tucker IG; Das SC Int J Pharm; 2018 Oct; 550(1-2):398-417. PubMed ID: 30179703 [TBL] [Abstract][Full Text] [Related]
9. Preparation, optimization, and in vitro simulated inhalation delivery of carvedilol nanoparticles loaded on a coarse carrier intended for pulmonary administration. Abdelbary AA; Al-mahallawi AM; Abdelrahim ME; Ali AM Int J Nanomedicine; 2015; 10():6339-53. PubMed ID: 26491298 [TBL] [Abstract][Full Text] [Related]
10. Platinum pharmacokinetics in mice following inhalation of cisplatin dry powders with different release and lung retention properties. Levet V; Merlos R; Rosière R; Amighi K; Wauthoz N Int J Pharm; 2017 Jan; 517(1-2):359-372. PubMed ID: 28007545 [TBL] [Abstract][Full Text] [Related]
11. Development of dry powder inhaler formulation loaded with alendronate solid lipid nanoparticles: solid-state characterization and aerosol dispersion performance. Ezzati Nazhad Dolatabadi J; Hamishehkar H; Valizadeh H Drug Dev Ind Pharm; 2015; 41(9):1431-7. PubMed ID: 25220930 [TBL] [Abstract][Full Text] [Related]
12. Dry powder inhaler formulation of high-payload antibiotic nanoparticle complex intended for bronchiectasis therapy: Spray drying versus spray freeze drying preparation. Yu H; Teo J; Chew JW; Hadinoto K Int J Pharm; 2016 Feb; 499(1-2):38-46. PubMed ID: 26757148 [TBL] [Abstract][Full Text] [Related]
13. Development and evaluation of well-tolerated and tumor-penetrating polymeric micelle-based dry powders for inhaled anti-cancer chemotherapy. Rosière R; Van Woensel M; Mathieu V; Langer I; Mathivet T; Vermeersch M; Amighi K; Wauthoz N Int J Pharm; 2016 Mar; 501(1-2):148-59. PubMed ID: 26850313 [TBL] [Abstract][Full Text] [Related]
14. Inhalable solid lipid nanoparticles of levofloxacin for potential tuberculosis treatment. Paul PK; Nakpheng T; Paliwal H; Prem Ananth K; Srichana T Int J Pharm; 2024 Jul; 660():124309. PubMed ID: 38848797 [TBL] [Abstract][Full Text] [Related]
15. Development of controlled-release cisplatin dry powders for inhalation against lung cancers. Levet V; Rosière R; Merlos R; Fusaro L; Berger G; Amighi K; Wauthoz N Int J Pharm; 2016 Dec; 515(1-2):209-220. PubMed ID: 27737810 [TBL] [Abstract][Full Text] [Related]
16. Montelukast-loaded nanostructured lipid carriers: part II pulmonary drug delivery and in vitro-in vivo aerosol performance. Patil-Gadhe A; Kyadarkunte A; Patole M; Pokharkar V Eur J Pharm Biopharm; 2014 Sep; 88(1):169-77. PubMed ID: 25078860 [TBL] [Abstract][Full Text] [Related]
17. A comparison between spray drying and spray freeze drying for dry powder inhaler formulation of drug-loaded lipid-polymer hybrid nanoparticles. Wang Y; Kho K; Cheow WS; Hadinoto K Int J Pharm; 2012 Mar; 424(1-2):98-106. PubMed ID: 22226876 [TBL] [Abstract][Full Text] [Related]
18. Feasibility of haloperidol-anchored albumin nanoparticles loaded with doxorubicin as dry powder inhaler for pulmonary delivery. Varshosaz J; Hassanzadeh F; Mardani A; Rostami M Pharm Dev Technol; 2015 Mar; 20(2):183-96. PubMed ID: 24219091 [TBL] [Abstract][Full Text] [Related]
19. Chitosan nanoparticles as a promising approach for pulmonary delivery of bedaquiline. Rawal T; Patel S; Butani S Eur J Pharm Sci; 2018 Nov; 124():273-287. PubMed ID: 30176365 [TBL] [Abstract][Full Text] [Related]
20. Spray-freeze-drying production of thermally sensitive polymeric nanoparticle aggregates for inhaled drug delivery: effect of freeze-drying adjuvants. Cheow WS; Ng ML; Kho K; Hadinoto K Int J Pharm; 2011 Feb; 404(1-2):289-300. PubMed ID: 21093560 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]