BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 27473483)

  • 1. Affinity Monolith-Integrated Microchips for Protein Purification and Concentration.
    Gao C; Sun X; Wang H; Qiao W; Hu B
    Methods Mol Biol; 2016; 1466():85-92. PubMed ID: 27473483
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Affinity monolith-integrated poly(methyl methacrylate) microchips for on-line protein extraction and capillary electrophoresis.
    Sun X; Yang W; Pan T; Woolley AT
    Anal Chem; 2008 Jul; 80(13):5126-30. PubMed ID: 18479142
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-performance affinity chromatography with immobilization of protein A and L-histidine on molded monolith.
    Luo Q; Zou H; Zhang Q; Xiao X; Ni J
    Biotechnol Bioeng; 2002 Dec; 80(5):481-9. PubMed ID: 12355458
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design and evaluation of a coupled monolithic pre-concentrator-capillary zone electrophoresis system for the extraction of immunoglobulin G from human serum.
    Armenta JM; Gu B; Humble PH; Thulin CD; Lee ML
    J Chromatogr A; 2005 Dec; 1097(1-2):171-8. PubMed ID: 16298197
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Affinity monoliths for ultrafast immunoextraction.
    Jiang T; Mallik R; Hage DS
    Anal Chem; 2005 Apr; 77(8):2362-72. PubMed ID: 15828768
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monolith weak affinity chromatography for μg-protein-ligand interaction study.
    Lecas L; Randon J; Berthod A; Dugas V; Demesmay C
    J Pharm Biomed Anal; 2019 Mar; 166():164-173. PubMed ID: 30654204
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-performance affinity monolith chromatography: development and evaluation of human serum albumin columns.
    Mallik R; Jiang T; Hage DS
    Anal Chem; 2004 Dec; 76(23):7013-22. PubMed ID: 15571354
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Affinity chromatography of proteins on non-porous copolymerized particles of styrene, methyl methacrylate and glycidyl methacrylate.
    Chen CH; Lee WC
    J Chromatogr A; 2001 Jun; 921(1):31-7. PubMed ID: 11461011
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Affinity monoliths generated by in situ polymerization of the ligand.
    Hahn R; Podgomik A; Merhar M; Schallaun E; Jungbauer A
    Anal Chem; 2001 Nov; 73(21):5126-32. PubMed ID: 11721909
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coupled affinity-hydrophobic monolithic column for on-line removal of immunoglobulin G, preconcentration of low abundance proteins and separation by capillary zone electrophoresis.
    Armenta JM; Gu B; Thulin CD; Lee ML
    J Chromatogr A; 2007 Apr; 1148(1):115-22. PubMed ID: 17379232
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Grafting polymerization of glycidyl methacrylate onto capillary-channeled polymer (C-CP) fibers as a ligand binding platform: Applications in immobilized metal-ion affinity chromatography (IMAC) protein separations.
    Trang HK; Jiang L; Marcus RK
    J Chromatogr B Analyt Technol Biomed Life Sci; 2019 Mar; 1110-1111():144-154. PubMed ID: 30807967
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Affinity chromatography with monolithic capillary columns I. Polymethacrylate monoliths with immobilized mannan for the separation of mannose-binding proteins by capillary electrochromatography and nano-scale liquid chromatography.
    Bedair M; El Rassi Z
    J Chromatogr A; 2004 Jul; 1044(1-2):177-86. PubMed ID: 15354437
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication of high-permeability and high-capacity monolith for protein chromatography.
    Du KF; Yang D; Sun Y
    J Chromatogr A; 2007 Sep; 1163(1-2):212-8. PubMed ID: 17624360
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integrated lectin affinity microfluidic chip for glycoform separation.
    Mao X; Luo Y; Dai Z; Wang K; Du Y; Lin B
    Anal Chem; 2004 Dec; 76(23):6941-7. PubMed ID: 15571345
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monoliths with immobilized zirconium ions for selective enrichment of phosphopeptides.
    Wang H; Duan J; Yu H; Zhao L; Liang Y; Shan Y; Zhang L; Liang Z; Zhang Y
    J Sep Sci; 2011 Aug; 34(16-17):2113-21. PubMed ID: 21648081
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Capillary electrochromatography of proteins and peptides with a cationic acrylic monolith.
    Zhang S; Huang X; Zhang J; Horváth C
    J Chromatogr A; 2000 Jul; 887(1-2):465-77. PubMed ID: 10961334
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of methacrylate chromatographic monoliths bearing affinity ligands.
    Černigoj U; Vidic U; Nemec B; Gašperšič J; Vidič J; Lendero Krajnc N; Štrancar A; Podgornik A
    J Chromatogr A; 2016 Sep; 1464():72-8. PubMed ID: 27554023
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation and evaluation of hydroxylated poly(glycidyl methacrylate-co-ethylene dimethacrylate) monolithic capillary for in-tube solid-phase microextraction coupled to high-performance liquid chromatography.
    Wen Y; Feng YQ
    J Chromatogr A; 2007 Aug; 1160(1-2):90-8. PubMed ID: 17559862
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimization of human serum albumin monoliths for chiral separations and high-performance affinity chromatography.
    Pfaunmiller EL; Hartmann M; Dupper CM; Soman S; Hage DS
    J Chromatogr A; 2012 Dec; 1269():198-207. PubMed ID: 23010249
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microaffinity purification of proteins based on photolytic elution: toward an efficient microbead affinity chromatography on a chip.
    Chung WJ; Kim MS; Cho S; Park SS; Kim JH; Kim YK; Kim BG; Lee YS
    Electrophoresis; 2005 Feb; 26(3):694-702. PubMed ID: 15690422
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.