These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 27473602)

  • 1. S-Nitrosylation Induces Structural and Dynamical Changes in a Rhodanese Family Protein.
    Eichmann C; Tzitzilonis C; Nakamura T; Kwiatkowski W; Maslennikov I; Choe S; Lipton SA; Riek R
    J Mol Biol; 2016 Sep; 428(19):3737-51. PubMed ID: 27473602
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fast conformational exchange between the sulfur-free and persulfide-bound rhodanese domain of E. coli YgaP.
    Wang W; Zhou P; He Y; Yu L; Xiong Y; Tian C; Wu F
    Biochem Biophys Res Commun; 2014 Sep; 452(3):817-21. PubMed ID: 25204500
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Solution NMR structure and functional analysis of the integral membrane protein YgaP from Escherichia coli.
    Eichmann C; Tzitzilonis C; Bordignon E; Maslennikov I; Choe S; Riek R
    J Biol Chem; 2014 Aug; 289(34):23482-503. PubMed ID: 24958726
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 1H, 13C and 15N resonance assignments of the rhodanese domain of YgaP from Escherichia coli.
    Li H; Bi Y; Xia B; Jin C
    Biomol NMR Assign; 2011 Apr; 5(1):101-3. PubMed ID: 20960078
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 1H, 13C and 15N resonance assignments of rhodanese GlpE from Escherichia coli.
    Li H; Xia B; Jin C
    Biomol NMR Assign; 2011 Apr; 5(1):97-9. PubMed ID: 20960079
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solution structures and backbone dynamics of Escherichia coli rhodanese PspE in its sulfur-free and persulfide-intermediate forms: implications for the catalytic mechanism of rhodanese.
    Li H; Yang F; Kang X; Xia B; Jin C
    Biochemistry; 2008 Apr; 47(15):4377-85. PubMed ID: 18355042
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crystal structure of YnjE from Escherichia coli, a sulfurtransferase with three rhodanese domains.
    Hänzelmann P; Dahl JU; Kuper J; Urban A; Müller-Theissen U; Leimkühler S; Schindelin H
    Protein Sci; 2009 Dec; 18(12):2480-91. PubMed ID: 19798741
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thiosulfate sulfurtransferase-like domain-containing 1 protein interacts with thioredoxin.
    Libiad M; Motl N; Akey DL; Sakamoto N; Fearon ER; Smith JL; Banerjee R
    J Biol Chem; 2018 Feb; 293(8):2675-2686. PubMed ID: 29348167
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibition of the catalytic activity of rhodanese by S-nitrosylation using nitric oxide donors.
    Kwiecień I; Sokołowska M; Luchter-Wasylewska E; Włodek L
    Int J Biochem Cell Biol; 2003 Dec; 35(12):1645-57. PubMed ID: 12962704
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Escherichia coli GlpE is a prototype sulfurtransferase for the single-domain rhodanese homology superfamily.
    Spallarossa A; Donahue JL; Larson TJ; Bolognesi M; Bordo D
    Structure; 2001 Nov; 9(11):1117-25. PubMed ID: 11709175
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural and biochemical analyses indicate that a bacterial persulfide dioxygenase-rhodanese fusion protein functions in sulfur assimilation.
    Motl N; Skiba MA; Kabil O; Smith JL; Banerjee R
    J Biol Chem; 2017 Aug; 292(34):14026-14038. PubMed ID: 28684420
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Active site structural features for chemically modified forms of rhodanese.
    Gliubich F; Gazerro M; Zanotti G; Delbono S; Bombieri G; Berni R
    J Biol Chem; 1996 Aug; 271(35):21054-61. PubMed ID: 8702871
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The crystal structure of a sulfurtransferase from Azotobacter vinelandii highlights the evolutionary relationship between the rhodanese and phosphatase enzyme families.
    Bordo D; Deriu D; Colnaghi R; Carpen A; Pagani S; Bolognesi M
    J Mol Biol; 2000 May; 298(4):691-704. PubMed ID: 10788330
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A persulfurated cysteine promotes active site reactivity in Azotobacter vinelandii Rhodanese.
    Bordo D; Forlani F; Spallarossa A; Colnaghi R; Carpen A; Bolognesi M; Pagani S
    Biol Chem; 2001 Aug; 382(8):1245-52. PubMed ID: 11592406
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The "rhodanese" fold and catalytic mechanism of 3-mercaptopyruvate sulfurtransferases: crystal structure of SseA from Escherichia coli.
    Spallarossa A; Forlani F; Carpen A; Armirotti A; Pagani S; Bolognesi M; Bordo D
    J Mol Biol; 2004 Jan; 335(2):583-93. PubMed ID: 14672665
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of a 12-kilodalton rhodanese encoded by glpE of Escherichia coli and its interaction with thioredoxin.
    Ray WK; Zeng G; Potters MB; Mansuri AM; Larson TJ
    J Bacteriol; 2000 Apr; 182(8):2277-84. PubMed ID: 10735872
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of putative sulfurtransferase genes in the extremophilic Acidithiobacillus ferrooxidans ATCC 23270 genome: structural and functional characterization of the proteins.
    Acosta M; Beard S; Ponce J; Vera M; Mobarec JC; Jerez CA
    OMICS; 2005; 9(1):13-29. PubMed ID: 15805776
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mutation of cysteine 254 facilitates the conformational changes accompanying the interconversion of persulfide-substituted and persulfide-free rhodanese.
    Islam TA; Miller-Martini DM; Horowitz PM
    J Biol Chem; 1994 Mar; 269(11):7903-13. PubMed ID: 8132509
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The cysteine-desulfurase IscS promotes the production of the rhodanese RhdA in the persulfurated form.
    Forlani F; Cereda A; Freuer A; Nimtz M; Leimkühler S; Pagani S
    FEBS Lett; 2005 Dec; 579(30):6786-90. PubMed ID: 16310786
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Amino-terminal dimerization, NRDP1-rhodanese interaction, and inhibited catalytic domain conformation of the ubiquitin-specific protease 8 (USP8).
    Avvakumov GV; Walker JR; Xue S; Finerty PJ; Mackenzie F; Newman EM; Dhe-Paganon S
    J Biol Chem; 2006 Dec; 281(49):38061-70. PubMed ID: 17035239
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.