These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 27473641)

  • 1. Refined clothespin relocation test and assessment of motion.
    Hussaini A; Kyberd P
    Prosthet Orthot Int; 2017 Jun; 41(3):294-302. PubMed ID: 27473641
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Clinical evaluation of the refined clothespin relocation test: A pilot study.
    Hussaini A; Hill W; Kyberd P
    Prosthet Orthot Int; 2019 Oct; 43(5):485-491. PubMed ID: 31264508
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Categorization of compensatory motions in transradial myoelectric prosthesis users.
    Hussaini A; Zinck A; Kyberd P
    Prosthet Orthot Int; 2017 Jun; 41(3):286-293. PubMed ID: 27473642
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of range-of-motion and variability in upper body movements between transradial prosthesis users and able-bodied controls when executing goal-oriented tasks.
    Major MJ; Stine RL; Heckathorne CW; Fatone S; Gard SA
    J Neuroeng Rehabil; 2014 Sep; 11():132. PubMed ID: 25192744
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomechanical analysis of users of multi-articulating externally powered prostheses with and without their device.
    Wanamaker AB; Whelan LR; Farley J; Chaudhari AM
    Prosthet Orthot Int; 2019 Dec; 43(6):618-628. PubMed ID: 31466507
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Myoelectric prosthesis users and non-disabled individuals wearing a simulated prosthesis exhibit similar compensatory movement strategies.
    Williams HE; Chapman CS; Pilarski PM; Vette AH; Hebert JS
    J Neuroeng Rehabil; 2021 May; 18(1):72. PubMed ID: 33933105
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessment of body-powered upper limb prostheses by able-bodied subjects, using the Box and Blocks Test and the Nine-Hole Peg Test.
    Haverkate L; Smit G; Plettenburg DH
    Prosthet Orthot Int; 2016 Feb; 40(1):109-16. PubMed ID: 25336050
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomechanical Analysis of Body Movements of Myoelectric Prosthesis Users During Standardized Clinical Tests.
    Vujaklija I; Jung MK; Hasenoehrl T; Roche AD; Sturma A; Muceli S; Crevenna R; Aszmann OC; Farina D
    IEEE Trans Biomed Eng; 2023 Mar; 70(3):789-799. PubMed ID: 36037457
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Compensatory movements of transradial prosthesis users during common tasks.
    Carey SL; Jason Highsmith M; Maitland ME; Dubey RV
    Clin Biomech (Bristol, Avon); 2008 Nov; 23(9):1128-35. PubMed ID: 18675497
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The clinical relevance of advanced artificial feedback in the control of a multi-functional myoelectric prosthesis.
    Markovic M; Schweisfurth MA; Engels LF; Bentz T; Wüstefeld D; Farina D; Dosen S
    J Neuroeng Rehabil; 2018 Mar; 15(1):28. PubMed ID: 29580245
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Compensatory strategies of body-powered prosthesis users reveal primary reliance on trunk motion and relation to skill level.
    Valevicius AM; Boser QA; Chapman CS; Pilarski PM; Vette AH; Hebert JS
    Clin Biomech (Bristol, Avon); 2020 Feb; 72():122-129. PubMed ID: 31862606
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinematic analysis of motor learning in upper limb body-powered bypass prosthesis training.
    Bloomer C; Wang S; Kontson K
    PLoS One; 2020; 15(1):e0226563. PubMed ID: 31978051
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The multi-grip and standard myoelectric hand prosthesis compared: does the multi-grip hand live up to its promise?
    Kerver N; Schuurmans V; van der Sluis CK; Bongers RM
    J Neuroeng Rehabil; 2023 Feb; 20(1):22. PubMed ID: 36793049
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative Eye Gaze and Movement Differences in Visuomotor Adaptations to Varying Task Demands Among Upper-Extremity Prosthesis Users.
    Hebert JS; Boser QA; Valevicius AM; Tanikawa H; Lavoie EB; Vette AH; Pilarski PM; Chapman CS
    JAMA Netw Open; 2019 Sep; 2(9):e1911197. PubMed ID: 31517965
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simultaneous Control of 2DOF Upper-Limb Prosthesis With Body Compensations-Based Control: A Multiple Cases Study.
    Legrand M; Marchand C; Richer F; Touillet A; Martinet N; Paysant J; Morel G; Jarrasse N
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():1745-1754. PubMed ID: 35749322
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of compensatory trunk movements during prosthetic upper limb reaching tasks.
    Metzger AJ; Dromerick AW; Holley RJ; Lum PS
    Arch Phys Med Rehabil; 2012 Nov; 93(11):2029-34. PubMed ID: 22449551
    [TBL] [Abstract][Full Text] [Related]  

  • 17. User training for machine learning controlled upper limb prostheses: a serious game approach.
    Kristoffersen MB; Franzke AW; Bongers RM; Wand M; Murgia A; van der Sluis CK
    J Neuroeng Rehabil; 2021 Feb; 18(1):32. PubMed ID: 33579326
    [TBL] [Abstract][Full Text] [Related]  

  • 18. User surveys support designing a prosthetic wrist that incorporates the Dart Thrower's Motion.
    Davidson M; Bodine C; Weir RFF
    Disabil Rehabil Assist Technol; 2019 Apr; 14(3):312-315. PubMed ID: 29514521
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Movement quality of conventional prostheses and the DEKA Arm during everyday tasks.
    Cowley J; Resnik L; Wilken J; Smurr Walters L; Gates D
    Prosthet Orthot Int; 2017 Feb; 41(1):33-40. PubMed ID: 26932980
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Case report of modified Box and Blocks test with motion capture to measure prosthetic function.
    Hebert JS; Lewicke J
    J Rehabil Res Dev; 2012; 49(8):1163-74. PubMed ID: 23341309
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.