These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

285 related articles for article (PubMed ID: 27473642)

  • 21. Movement quality of conventional prostheses and the DEKA Arm during everyday tasks.
    Cowley J; Resnik L; Wilken J; Smurr Walters L; Gates D
    Prosthet Orthot Int; 2017 Feb; 41(1):33-40. PubMed ID: 26932980
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Improving bimanual interaction with a prosthesis using semi-autonomous control.
    Volkmar R; Dosen S; Gonzalez-Vargas J; Baum M; Markovic M
    J Neuroeng Rehabil; 2019 Nov; 16(1):140. PubMed ID: 31727087
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Relation between capacity and performance in paediatric upper limb prosthesis users.
    Lindner H; Hiyoshi A; Hermansson L
    Prosthet Orthot Int; 2018 Feb; 42(1):14-20. PubMed ID: 28639478
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Motor performance benefits of matched limb imitation in prosthesis users.
    Cusack WF; Patterson R; Thach S; Kistenberg RS; Wheaton LA
    Exp Brain Res; 2014 Jul; 232(7):2143-54. PubMed ID: 24643547
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Upper limb activity in myoelectric prosthesis users is biased towards the intact limb and appears unrelated to goal-directed task performance.
    Chadwell A; Kenney L; Granat MH; Thies S; Head J; Galpin A; Baker R; Kulkarni J
    Sci Rep; 2018 Jul; 8(1):11084. PubMed ID: 30038402
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Sensor fusion and computer vision for context-aware control of a multi degree-of-freedom prosthesis.
    Markovic M; Dosen S; Popovic D; Graimann B; Farina D
    J Neural Eng; 2015 Dec; 12(6):066022. PubMed ID: 26529274
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Skill assessment in upper limb myoelectric prosthesis users: Validation of a clinically feasible method for characterising upper limb temporal and amplitude variability during the performance of functional tasks.
    Thies SB; Kenney LP; Sobuh M; Galpin A; Kyberd P; Stine R; Major MJ
    Med Eng Phys; 2017 Sep; 47():137-143. PubMed ID: 28684214
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Case report of modified Box and Blocks test with motion capture to measure prosthetic function.
    Hebert JS; Lewicke J
    J Rehabil Res Dev; 2012; 49(8):1163-74. PubMed ID: 23341309
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Wrist speed feedback improves elbow compensation and reaching accuracy for myoelectric transradial prosthesis users in hybrid virtual reaching task.
    Earley EJ; Johnson RE; Sensinger JW; Hargrove LJ
    J Neuroeng Rehabil; 2023 Jan; 20(1):9. PubMed ID: 36658605
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Visualisation of upper limb activity using spirals: A new approach to the assessment of daily prosthesis usage.
    Chadwell A; Kenney L; Granat M; Thies S; Head JS; Galpin A
    Prosthet Orthot Int; 2018 Feb; 42(1):37-44. PubMed ID: 28650213
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Restoring natural upper limb movement through a wrist prosthetic module for partial hand amputees.
    Choi S; Cho W; Kim K
    J Neuroeng Rehabil; 2023 Oct; 20(1):135. PubMed ID: 37798778
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparison of Motion Analysis Systems in Tracking Upper Body Movement of Myoelectric Bypass Prosthesis Users.
    Wang SL; Civillico G; Niswander W; Kontson KL
    Sensors (Basel); 2022 Apr; 22(8):. PubMed ID: 35458943
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Functional comparison of upper extremity amputees using myoelectric and conventional prostheses.
    Stein RB; Walley M
    Arch Phys Med Rehabil; 1983 Jun; 64(6):243-8. PubMed ID: 6860093
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Hand Function Kinematics when using a Simulated Myoelectric Prosthesis.
    Williams HE; Boser QA; Pilarski PM; Chapman CS; Vette AH; Hebert JS
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():169-174. PubMed ID: 31374625
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Analyzing at-home prosthesis use in unilateral upper-limb amputees to inform treatment & device design.
    Spiers AJ; Resnik L; Dollar AM
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1273-1280. PubMed ID: 28813996
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A Physics-based Virtual Reality Environment to Quantify Functional Performance of Upper-limb Prostheses.
    Odette K; Fu Q
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():3807-3810. PubMed ID: 31946703
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Attachment of upper arm prostheses with a subcutaneous osseointegrated implant in transhumeral amputees.
    Salminger S; Gradischar A; Skiera R; Roche AD; Sturma A; Hofer C; Aszmann OC
    Prosthet Orthot Int; 2018 Feb; 42(1):93-100. PubMed ID: 27638013
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The influence of environment: Experiences of users of myoelectric arm prosthesis-a qualitative study.
    Widehammar C; Pettersson I; Janeslätt G; Hermansson L
    Prosthet Orthot Int; 2018 Feb; 42(1):28-36. PubMed ID: 28470129
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Active upper limb prosthesis based on natural movement trajectories.
    Ramírez-García A; Leija L; Muñoz R
    Prosthet Orthot Int; 2010 Mar; 34(1):58-72. PubMed ID: 20196688
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Upper Limb Prosthesis Control for High-Level Amputees via Myoelectric Recognition of Leg Gestures.
    Lyons KR; Joshi SS; Joshi SS; Lyons KR
    IEEE Trans Neural Syst Rehabil Eng; 2018 May; 26(5):1056-1066. PubMed ID: 29752241
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.