BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 27473825)

  • 21. Targeting the super elongation complex for oncogenic transcription driven tumor malignancies: Progress in structure, mechanisms and small molecular inhibitor discovery.
    Wu X; Xie Y; Zhao K; Lu J
    Adv Cancer Res; 2023; 158():387-421. PubMed ID: 36990537
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evidence that the elongation factor TFIIS plays a role in transcription initiation at GAL1 in Saccharomyces cerevisiae.
    Prather DM; Larschan E; Winston F
    Mol Cell Biol; 2005 Apr; 25(7):2650-9. PubMed ID: 15767671
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Distinction and relationship between elongation rate and processivity of RNA polymerase II in vivo.
    Mason PB; Struhl K
    Mol Cell; 2005 Mar; 17(6):831-40. PubMed ID: 15780939
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Human immunodeficiency virus type 1 Tat-dependent activation of an arrested RNA polymerase II elongation complex.
    Liu Y; Suñé C; Garcia-Blanco MA
    Virology; 1999 Mar; 255(2):337-46. PubMed ID: 10069959
    [TBL] [Abstract][Full Text] [Related]  

  • 25. RNA polymerase II pausing as a context-dependent reader of the genome.
    Scheidegger A; Nechaev S
    Biochem Cell Biol; 2016 Feb; 94(1):82-92. PubMed ID: 26555214
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Genomic mapping of RNA polymerase II reveals sites of co-transcriptional regulation in human cells.
    Brodsky AS; Meyer CA; Swinburne IA; Hall G; Keenan BJ; Liu XS; Fox EA; Silver PA
    Genome Biol; 2005; 6(8):R64. PubMed ID: 16086846
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Identification of a regulator of transcription elongation as an accessory factor for the human Mediator coactivator.
    Malik S; Barrero MJ; Jones T
    Proc Natl Acad Sci U S A; 2007 Apr; 104(15):6182-7. PubMed ID: 17404243
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nucleosome displacement in transcription.
    Workman JL
    Genes Dev; 2006 Aug; 20(15):2009-17. PubMed ID: 16882978
    [TBL] [Abstract][Full Text] [Related]  

  • 29. News on initiation and elongation of transcription by RNA polymerase II.
    Maldonado E; Reinberg D
    Curr Opin Cell Biol; 1995 Jun; 7(3):352-61. PubMed ID: 7662365
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evidence for eviction and rapid deposition of histones upon transcriptional elongation by RNA polymerase II.
    Schwabish MA; Struhl K
    Mol Cell Biol; 2004 Dec; 24(23):10111-7. PubMed ID: 15542822
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The stress-activated Hog1 kinase is a selective transcriptional elongation factor for genes responding to osmotic stress.
    Proft M; Mas G; de Nadal E; Vendrell A; Noriega N; Struhl K; Posas F
    Mol Cell; 2006 Jul; 23(2):241-50. PubMed ID: 16857590
    [TBL] [Abstract][Full Text] [Related]  

  • 32. RNA polymerase II transcription elongation control.
    Guo J; Price DH
    Chem Rev; 2013 Nov; 113(11):8583-603. PubMed ID: 23919563
    [No Abstract]   [Full Text] [Related]  

  • 33. Control of transcription elongation by GreA determines rate of gene expression in Streptococcus pneumoniae.
    Yuzenkova Y; Gamba P; Herber M; Attaiech L; Shafeeq S; Kuipers OP; Klumpp S; Zenkin N; Veening JW
    Nucleic Acids Res; 2014; 42(17):10987-99. PubMed ID: 25190458
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Complexity of RNA polymerase II elongation dynamics.
    Palangat M; Larson DR
    Biochim Biophys Acta; 2012 Jul; 1819(7):667-72. PubMed ID: 22480952
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Phase separation, transcriptional elongation control, and human diseases.
    Guo C; Luo Z; Lin C
    J Mol Cell Biol; 2021 Aug; 13(4):314-318. PubMed ID: 33822962
    [No Abstract]   [Full Text] [Related]  

  • 36. Global unleashing of transcription elongation waves in response to genotoxic stress restricts somatic mutation rate.
    Lavigne MD; Konstantopoulos D; Ntakou-Zamplara KZ; Liakos A; Fousteri M
    Nat Commun; 2017 Dec; 8(1):2076. PubMed ID: 29233992
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The architecture of transcription elongation.
    Fouqueau T; Werner F
    Science; 2017 Sep; 357(6354):871-872. PubMed ID: 28860371
    [No Abstract]   [Full Text] [Related]  

  • 38. Selective expression of the transcription elongation factor ELL3 in B cells prior to ELL2 drives proliferation and survival.
    Alexander LMM; Watters J; Reusch JA; Maurin M; Nepon-Sixt BS; Vrzalikova K; Alexandrow MG; Murray PG; Wright KL
    Mol Immunol; 2017 Nov; 91():8-16. PubMed ID: 28858629
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Isolation and functional analysis of RNA polymerase II elongation complexes.
    Cheng B; Price DH
    Methods; 2009 Aug; 48(4):346-52. PubMed ID: 19409997
    [TBL] [Abstract][Full Text] [Related]  

  • 40. 4sUDRB-seq: measuring genomewide transcriptional elongation rates and initiation frequencies within cells.
    Fuchs G; Voichek Y; Benjamin S; Gilad S; Amit I; Oren M
    Genome Biol; 2014 May; 15(5):R69. PubMed ID: 24887486
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.