These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

806 related articles for article (PubMed ID: 27474381)

  • 1. Drop-Jump Landing Varies With Baseline Neurocognition: Implications for Anterior Cruciate Ligament Injury Risk and Prevention.
    Herman DC; Barth JT
    Am J Sports Med; 2016 Sep; 44(9):2347-53. PubMed ID: 27474381
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of an Intervention Program on Lower Extremity Biomechanics in Stop-Jump and Side-Cutting Tasks.
    Yang C; Yao W; Garrett WE; Givens DL; Hacke J; Liu H; Yu B
    Am J Sports Med; 2018 Oct; 46(12):3014-3022. PubMed ID: 30148646
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modification of Knee Flexion Angle Has Patient-Specific Effects on Anterior Cruciate Ligament Injury Risk Factors During Jump Landing.
    Favre J; Clancy C; Dowling AV; Andriacchi TP
    Am J Sports Med; 2016 Jun; 44(6):1540-6. PubMed ID: 26983457
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Young Athletes With Quadriceps Femoris Strength Asymmetry at Return to Sport After Anterior Cruciate Ligament Reconstruction Demonstrate Asymmetric Single-Leg Drop-Landing Mechanics.
    Ithurburn MP; Paterno MV; Ford KR; Hewett TE; Schmitt LC
    Am J Sports Med; 2015 Nov; 43(11):2727-37. PubMed ID: 26359376
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effects of 2 landing techniques on knee kinematics, kinetics, and performance during stop-jump and side-cutting tasks.
    Dai B; Garrett WE; Gross MT; Padua DA; Queen RM; Yu B
    Am J Sports Med; 2015 Feb; 43(2):466-74. PubMed ID: 25367015
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Age Influences Biomechanical Changes After Participation in an Anterior Cruciate Ligament Injury Prevention Program.
    Thompson-Kolesar JA; Gatewood CT; Tran AA; Silder A; Shultz R; Delp SL; Dragoo JL
    Am J Sports Med; 2018 Mar; 46(3):598-606. PubMed ID: 29281799
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinematics and electromyography of landing preparation in vertical stop-jump: risks for noncontact anterior cruciate ligament injury.
    Chappell JD; Creighton RA; Giuliani C; Yu B; Garrett WE
    Am J Sports Med; 2007 Feb; 35(2):235-41. PubMed ID: 17092926
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relative strain in the anterior cruciate ligament and medial collateral ligament during simulated jump landing and sidestep cutting tasks: implications for injury risk.
    Bates NA; Nesbitt RJ; Shearn JT; Myer GD; Hewett TE
    Am J Sports Med; 2015 Sep; 43(9):2259-69. PubMed ID: 26150588
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effects of a subsequent jump on the knee abduction angle during the early landing phase.
    Ishida T; Koshino Y; Yamanaka M; Ueno R; Taniguchi S; Samukawa M; Saito H; Matsumoto H; Aoki Y; Tohyama H
    BMC Musculoskelet Disord; 2018 Oct; 19(1):379. PubMed ID: 30342498
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetic and kinematic differences between first and second landings of a drop vertical jump task: implications for injury risk assessments.
    Bates NA; Ford KR; Myer GD; Hewett TE
    Clin Biomech (Bristol); 2013 Apr; 28(4):459-66. PubMed ID: 23562293
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Difference in leg asymmetry between female collegiate athletes and recreational athletes during drop vertical jump.
    Morishige Y; Harato K; Kobayashi S; Niki Y; Matsumoto M; Nakamura M; Nagura T
    J Orthop Surg Res; 2019 Dec; 14(1):424. PubMed ID: 31822295
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of landing biomechanics between male and female dancers and athletes, part 2: Influence of fatigue and implications for anterior cruciate ligament injury.
    Liederbach M; Kremenic IJ; Orishimo KF; Pappas E; Hagins M
    Am J Sports Med; 2014 May; 42(5):1089-95. PubMed ID: 24595401
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiplanar Loading of the Knee and Its Influence on Anterior Cruciate Ligament and Medial Collateral Ligament Strain During Simulated Landings and Noncontact Tears.
    Bates NA; Schilaty ND; Nagelli CV; Krych AJ; Hewett TE
    Am J Sports Med; 2019 Jul; 47(8):1844-1853. PubMed ID: 31150273
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relation between peak knee flexion angle and knee ankle kinetics in single-leg jump landing from running: a pilot study on male handball players to prevent ACL injury.
    Ameer MA; Muaidi QI
    Phys Sportsmed; 2017 Sep; 45(3):337-343. PubMed ID: 28628348
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of sex on compensatory landing strategies upon return to sport after anterior cruciate ligament reconstruction.
    Paterno MV; Schmitt LC; Ford KR; Rauh MJ; Myer GD; Hewett TE
    J Orthop Sports Phys Ther; 2011 Aug; 41(8):553-9. PubMed ID: 21808100
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In Vivo Anterior Cruciate Ligament Deformation During a Single-Legged Jump Measured by Magnetic Resonance Imaging and High-Speed Biplanar Radiography.
    Englander ZA; Baldwin EL; Smith WAR; Garrett WE; Spritzer CE; DeFrate LE
    Am J Sports Med; 2019 Nov; 47(13):3166-3172. PubMed ID: 31593498
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Peak knee biomechanics and limb symmetry following unilateral anterior cruciate ligament reconstruction: Associations of walking gait and jump-landing outcomes.
    Pfeiffer SJ; Blackburn JT; Luc-Harkey B; Harkey MS; Stanley LE; Frank B; Padua D; Marshall SW; Spang JT; Pietrosimone B
    Clin Biomech (Bristol); 2018 Mar; 53():79-85. PubMed ID: 29471191
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Volitional Spine Stabilization During a Drop Vertical Jump From Different Landing Heights: Implications for Anterior Cruciate Ligament Injury.
    Haddas R; Hooper T; James CR; Sizer PS
    J Athl Train; 2016 Dec; 51(12):1003-1012. PubMed ID: 27874298
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effects of three jump landing tasks on kinetic and kinematic measures: implications for ACL injury research.
    Cruz A; Bell D; McGrath M; Blackburn T; Padua D; Herman D
    Res Sports Med; 2013; 21(4):330-42. PubMed ID: 24067119
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Landing Kinematics and Kinetics at the Knee During Different Landing Tasks.
    Heebner NR; Rafferty DM; Wohleber MF; Simonson AJ; Lovalekar M; Reinert A; Sell TC
    J Athl Train; 2017 Dec; 52(12):1101-1108. PubMed ID: 29154692
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 41.