These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
237 related articles for article (PubMed ID: 27474599)
41. Superparamagnetic iron oxide nanoparticles conjugated with folic acid for dual target-specific drug delivery and MRI in cancer theranostics. Huang Y; Mao K; Zhang B; Zhao Y Mater Sci Eng C Mater Biol Appl; 2017 Jan; 70(Pt 1):763-771. PubMed ID: 27770953 [TBL] [Abstract][Full Text] [Related]
42. Study and evaluation of nucleolin-targeted delivery of magnetic PLGA-PEG nanospheres loaded with doxorubicin to C6 glioma cells compared with low nucleolin-expressing L929 cells. Mosafer J; Teymouri M; Abnous K; Tafaghodi M; Ramezani M Mater Sci Eng C Mater Biol Appl; 2017 Mar; 72():123-133. PubMed ID: 28024568 [TBL] [Abstract][Full Text] [Related]
43. Targeted delivery of doxorubicin by magnetic mesoporous silica nanoparticles armed with mucin-1 aptamer. Siminzar P; Omidi Y; Golchin A; Aghanejad A; Barar J J Drug Target; 2020 Jan; 28(1):92-101. PubMed ID: 31062625 [TBL] [Abstract][Full Text] [Related]
44. Multifunctional Iron Oxide Nanocarriers Synthesis for Drug Delivery, Diagnostic Imaging, and Biodistribution Study. Raoof F; Munawar A; Ahmad M; Rizvi SFA; Ali Z; Shahid AB Appl Biochem Biotechnol; 2023 Jul; 195(7):4469-4484. PubMed ID: 36701093 [TBL] [Abstract][Full Text] [Related]
45. Preparation, characterisation and in vitro and in vivo evaluation of CD44-targeted chondroitin sulphate-conjugated doxorubicin PLGA nanoparticles. Liu P; Chen N; Yan L; Gao F; Ji D; Zhang S; Zhang L; Li Y; Xiao Y Carbohydr Polym; 2019 Jun; 213():17-26. PubMed ID: 30879657 [TBL] [Abstract][Full Text] [Related]
46. Co-delivery of erlotinib and doxorubicin by pH-sensitive charge conversion nanocarrier for synergistic therapy. He Y; Su Z; Xue L; Xu H; Zhang C J Control Release; 2016 May; 229():80-92. PubMed ID: 26945977 [TBL] [Abstract][Full Text] [Related]
47. Dextran-coated superparamagnetic nanoparticles as potential cancer drug carriers in vivo. Peng M; Li H; Luo Z; Kong J; Wan Y; Zheng L; Zhang Q; Niu H; Vermorken A; Van de Ven W; Chen C; Zhang X; Li F; Guo L; Cui Y Nanoscale; 2015 Jul; 7(25):11155-62. PubMed ID: 26062012 [TBL] [Abstract][Full Text] [Related]
48. Superparamagnetic Reduction/pH/Temperature Multistimuli-Responsive Nanoparticles for Targeted and Controlled Antitumor Drug Delivery. Zeng J; Du P; Liu L; Li J; Tian K; Jia X; Zhao X; Liu P Mol Pharm; 2015 Dec; 12(12):4188-99. PubMed ID: 26554495 [TBL] [Abstract][Full Text] [Related]
49. High drug-loading system of hollow carbon dots-doxorubicin: preparation, in vitro release and pH-targeted research. Zhang Z; Lei Y; Yang X; Shi N; Geng L; Wang S; Zhang J; Shi S J Mater Chem B; 2019 Apr; 7(13):2130-2137. PubMed ID: 32073571 [TBL] [Abstract][Full Text] [Related]
50. Doxorubicin loaded magnetic gold nanoparticles for in vivo targeted drug delivery. Elbialy NS; Fathy MM; Khalil WM Int J Pharm; 2015 Jul; 490(1-2):190-9. PubMed ID: 25997662 [TBL] [Abstract][Full Text] [Related]
51. pH-sensitive polymeric micelles formed by doxorubicin conjugated prodrugs for co-delivery of doxorubicin and paclitaxel. Ma Y; Fan X; Li L Carbohydr Polym; 2016 Feb; 137():19-29. PubMed ID: 26686101 [TBL] [Abstract][Full Text] [Related]
53. Enzyme/pH-triggered anticancer drug delivery of chondroitin sulfate modified doxorubicin nanocrystal. Liang Y; Fu X; Du C; Xia H; Lai Y; Sun Y Artif Cells Nanomed Biotechnol; 2020 Dec; 48(1):1114-1124. PubMed ID: 32880192 [TBL] [Abstract][Full Text] [Related]
54. Reductively degradable α-amino acid-based poly(ester amide)-graft-galactose copolymers: facile synthesis, self-assembly, and hepatoma-targeting doxorubicin delivery. Lv J; Sun H; Zou Y; Meng F; Dias AA; Hendriks M; Feijen J; Zhong Z Biomater Sci; 2015 Jul; 3(7):1134-46. PubMed ID: 26221946 [TBL] [Abstract][Full Text] [Related]
55. Development and characterization of metal oxide nanoparticles for the delivery of anticancer drug. Sharma H; Kumar K; Choudhary C; Mishra PK; Vaidya B Artif Cells Nanomed Biotechnol; 2016; 44(2):672-9. PubMed ID: 25406734 [TBL] [Abstract][Full Text] [Related]
56. Magnetic pH-responsive nanocarrier with long spacer length and high colloidal stability for controlled delivery of doxorubicin. Pourjavadi A; Hosseini SH; Alizadeh M; Bennett C Colloids Surf B Biointerfaces; 2014 Apr; 116():49-54. PubMed ID: 24441180 [TBL] [Abstract][Full Text] [Related]
57. Near-infrared light remote-controlled intracellular anti-cancer drug delivery using thermo/pH sensitive nanovehicle. Qin Y; Chen J; Bi Y; Xu X; Zhou H; Gao J; Hu Y; Zhao Y; Chai Z Acta Biomater; 2015 Apr; 17():201-9. PubMed ID: 25644449 [TBL] [Abstract][Full Text] [Related]
58. Preparation, characterization and preliminary pharmacokinetic study of pH-sensitive Hydroxyapatite/Zein nano-drug delivery system for doxorubicin hydrochloride. Zha L; Wang B; Qian J; Fletcher B; Zhang C; Dong Q; Chen W; Hong L J Pharm Pharmacol; 2020 Apr; 72(4):496-506. PubMed ID: 31975457 [TBL] [Abstract][Full Text] [Related]
59. Facile synthesis of pH sensitive polymer-coated mesoporous silica nanoparticles and their application in drug delivery. Tang H; Guo J; Sun Y; Chang B; Ren Q; Yang W Int J Pharm; 2011 Dec; 421(2):388-96. PubMed ID: 22001840 [TBL] [Abstract][Full Text] [Related]
60. Enhanced doxorubicin delivery and cytotoxicity in multidrug resistant cancer cells using multifunctional magnetic nanoparticles. Pilapong C; Keereeta Y; Munkhetkorn S; Thongtem S; Thongtem T Colloids Surf B Biointerfaces; 2014 Jan; 113():249-53. PubMed ID: 24103503 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]