These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
288 related articles for article (PubMed ID: 27474848)
1. Comprehensive review on phytotechnology: Heavy metals removal by diverse aquatic plants species from wastewater. Rezania S; Taib SM; Md Din MF; Dahalan FA; Kamyab H J Hazard Mater; 2016 Nov; 318():587-599. PubMed ID: 27474848 [TBL] [Abstract][Full Text] [Related]
2. Heavy metal pollution in aquatic ecosystems and its phytoremediation using wetland plants: an ecosustainable approach. Rai PK Int J Phytoremediation; 2008; 10(2):131-58. PubMed ID: 18709926 [TBL] [Abstract][Full Text] [Related]
3. Phytoremediation: role of terrestrial plants and aquatic macrophytes in the remediation of radionuclides and heavy metal contaminated soil and water. Sharma S; Singh B; Manchanda VK Environ Sci Pollut Res Int; 2015 Jan; 22(2):946-62. PubMed ID: 25277712 [TBL] [Abstract][Full Text] [Related]
4. Phytohormonal Roles in Plant Responses to Heavy Metal Stress: Implications for Using Macrophytes in Phytoremediation of Aquatic Ecosystems. Nguyen TQ; Sesin V; Kisiala A; Emery RJN Environ Toxicol Chem; 2021 Jan; 40(1):7-22. PubMed ID: 33074580 [TBL] [Abstract][Full Text] [Related]
5. Meta-Analysis of the Copper, Zinc, and Cadmium Absorption Capacities of Aquatic Plants in Heavy Metal-Polluted Water. Li J; Yu H; Luan Y Int J Environ Res Public Health; 2015 Nov; 12(12):14958-73. PubMed ID: 26703632 [TBL] [Abstract][Full Text] [Related]
6. Effective phytoremediation of low-level heavy metals by native macrophytes in a vanadium mining area, China. Jiang B; Xing Y; Zhang B; Cai R; Zhang D; Sun G Environ Sci Pollut Res Int; 2018 Nov; 25(31):31272-31282. PubMed ID: 30194573 [TBL] [Abstract][Full Text] [Related]
7. Green solutions for antibiotic pollution: Assessing the phytoremediation potential of aquatic macrophytes in wastewater treatment plants. Marques RZ; Oliveira PGD; Barbato ML; Kitamura RSA; Maranho LT; Brito JCM; Nogueira KDS; Juneau P; Gomes MP Environ Pollut; 2024 Sep; 357():124376. PubMed ID: 38897277 [TBL] [Abstract][Full Text] [Related]
8. Heavy metal pollution in lentic ecosystem of sub-tropical industrial region and its phytoremediation. Rai PK Int J Phytoremediation; 2010 Mar; 12(3):226-42. PubMed ID: 20734618 [TBL] [Abstract][Full Text] [Related]
9. Phytoremediation technology and food security impacts of heavy metal contaminated soils: A review of literature. Oladoye PO; Olowe OM; Asemoloye MD Chemosphere; 2022 Feb; 288(Pt 2):132555. PubMed ID: 34653492 [TBL] [Abstract][Full Text] [Related]
10. Concurrent removal and accumulation of heavy metals by the three aquatic macrophytes. Mishra VK; Tripathi BD Bioresour Technol; 2008 Oct; 99(15):7091-7. PubMed ID: 18296043 [TBL] [Abstract][Full Text] [Related]
11. Selection of wild macrophytes for use in constructed wetlands for phytoremediation of contaminant mixtures. Guittonny-Philippe A; Petit ME; Masotti V; Monnier Y; Malleret L; Coulomb B; Combroux I; Baumberger T; Viglione J; Laffont-Schwob I J Environ Manage; 2015 Jan; 147():108-23. PubMed ID: 25262393 [TBL] [Abstract][Full Text] [Related]
12. Potential application of enhanced phytoremediation for heavy metals treatment in Nepal. Timalsina H; Gyawali T; Ghimire S; Paudel SR Chemosphere; 2022 Nov; 306():135581. PubMed ID: 35798158 [TBL] [Abstract][Full Text] [Related]
13. Phytoremediation: Environmentally sustainable way for reclamation of heavy metal polluted soils. Ashraf S; Ali Q; Zahir ZA; Ashraf S; Asghar HN Ecotoxicol Environ Saf; 2019 Jun; 174():714-727. PubMed ID: 30878808 [TBL] [Abstract][Full Text] [Related]
14. Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants. Salt DE; Blaylock M; Kumar NP; Dushenkov V; Ensley BD; Chet I; Raskin I Biotechnology (N Y); 1995 May; 13(5):468-74. PubMed ID: 9634787 [TBL] [Abstract][Full Text] [Related]
15. Phytoremediation of heavy metals from aqueous solutions by two aquatic macrophytes, Ceratophyllum demersum and Lemna gibba L. Abdallah MA Environ Technol; 2012; 33(13-15):1609-14. PubMed ID: 22988621 [TBL] [Abstract][Full Text] [Related]
16. Efficacious bioremediation of heavy metals and radionuclides from wastewater employing aquatic macro- and microphytes. Das S; Das S; Ghangrekar MM J Basic Microbiol; 2022 Mar; 62(3-4):260-278. PubMed ID: 35014053 [TBL] [Abstract][Full Text] [Related]
17. Effect of circulation on wastewater treatment by Lemna gibba and Lemna minor (floating aquatic macrophytes). Demirezen Yilmaz D; Akbulut H Int J Phytoremediation; 2011; 13(10):970-84. PubMed ID: 21972565 [TBL] [Abstract][Full Text] [Related]
18. Heavy metal pollution induced due to coal mining effluent on surrounding aquatic ecosystem and its management through naturally occurring aquatic macrophytes. Mishra VK; Upadhyaya AR; Pandey SK; Tripathi BD Bioresour Technol; 2008 Mar; 99(5):930-6. PubMed ID: 17475484 [TBL] [Abstract][Full Text] [Related]
20. Phytoremediation of landfill leachate waste contaminants through floating bed technique using water hyacinth and water lettuce. Abbas Z; Arooj F; Ali S; Zaheer IE; Rizwan M; Riaz MA Int J Phytoremediation; 2019; 21(13):1356-1367. PubMed ID: 31364389 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]