BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 27475142)

  • 1. A perfectly matched layer for fluid-solid problems: Application to ocean-acoustics simulations with solid ocean bottoms.
    Xie Z; Matzen R; Cristini P; Komatitsch D; Martin R
    J Acoust Soc Am; 2016 Jul; 140(1):165. PubMed ID: 27475142
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Convolutional perfectly matched layer for elastic second-order wave equation.
    Li Y; Bou Matar O
    J Acoust Soc Am; 2010 Mar; 127(3):1318-27. PubMed ID: 20329831
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An axisymmetric time-domain spectral-element method for full-wave simulations: Application to ocean acoustics.
    Bottero A; Cristini P; Komatitsch D; Asch M
    J Acoust Soc Am; 2016 Nov; 140(5):3520. PubMed ID: 27908033
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A perfectly matched layer formulation for modeling transient wave propagation in an unbounded fluid-solid medium.
    Assi H; Cobbold RS
    J Acoust Soc Am; 2016 Apr; 139(4):1528. PubMed ID: 27106301
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel unsplit perfectly matched layer for the second-order acoustic wave equation.
    Ma Y; Yu J; Wang Y
    Ultrasonics; 2014 Aug; 54(6):1568-74. PubMed ID: 24794509
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unsplit complex frequency shifted perfectly matched layer for second-order wave equation using auxiliary differential equations.
    Gao Y; Zhang J; Yao Z
    J Acoust Soc Am; 2015 Dec; 138(6):EL551-7. PubMed ID: 26723366
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Perfectly matched layer absorbing boundary conditions for Euler equations with oblique mean flows modeled with smoothed particle hydrodynamics.
    Yang J; Zhang X; Liu GR; Mao Z; Zhang W
    J Acoust Soc Am; 2020 Feb; 147(2):1311. PubMed ID: 32113260
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Numerical modeling and observations of seismo-acoustic waves propagating as modes in a fluid-solid waveguide.
    Lecoulant J; Guennou C; Guillon L; Royer JY
    J Acoust Soc Am; 2022 May; 151(5):3437. PubMed ID: 35649888
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Full-wave simulation of optical waveguides via truncation in the method of moments using PML absorbing boundary conditions.
    Karagounis G; De Zutter D; Vande Ginste D
    Opt Express; 2016 Dec; 24(25):28326-28336. PubMed ID: 27958543
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Shock wave propagation along constant sloped ocean bottoms.
    Maestas JT; Taylor LF; Collis JM
    J Acoust Soc Am; 2014 Dec; 136(6):2987. PubMed ID: 25480048
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A general form of perfectly matched layers for three-dimensional problems of acoustic scattering in lossless and lossy fluid media.
    Katsibas TK; Antonopoulos CS
    IEEE Trans Ultrason Ferroelectr Freq Control; 2004 Aug; 51(8):964-72. PubMed ID: 15344402
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A compact perfectly matched layer algorithm for acoustic simulations in the time domain with smoothed particle hydrodynamic method.
    Yang J; Zhang X; Liu GR; Zhang W
    J Acoust Soc Am; 2019 Jan; 145(1):204. PubMed ID: 30710919
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Some illustrative examples of the use of a spectral-element method in ocean acoustics.
    Cristini P; Komatitsch D
    J Acoust Soc Am; 2012 Mar; 131(3):EL229-35. PubMed ID: 22423813
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A first-order k-space model for elastic wave propagation in heterogeneous media.
    Firouzi K; Cox BT; Treeby BE; Saffari N
    J Acoust Soc Am; 2012 Sep; 132(3):1271-83. PubMed ID: 22978855
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A modified and stable version of a perfectly matched layer technique for the 3-d second order wave equation in time domain with an application to aeroacoustics.
    Kaltenbacher B; Kaltenbacher M; Sim I
    J Comput Phys; 2013 Feb; 235(100):407-422. PubMed ID: 23888085
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simulation of acoustic wave propagation in dispersive media with relaxation losses by using FDTD method with PML absorbing boundary condition.
    Yuan X; Borup D; Wiskin J; Berggren M; Johnson SA
    IEEE Trans Ultrason Ferroelectr Freq Control; 1999; 46(1):14-23. PubMed ID: 18238394
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Elastic waves in a fluid-loaded, semi-infinite axisymmetric rod.
    Ai Y
    IEEE Trans Ultrason Ferroelectr Freq Control; 2007 Apr; 54(4):809-22. PubMed ID: 17441590
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Perfectly Matched Layer absorbing boundary for fluid-structure interactions using the Immersed Finite Element Method.
    Yang J; Yu F; Krane M; Zhang LT
    J Fluids Struct; 2018 Jan; 76():135-152. PubMed ID: 29151673
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An immersed boundary computational model for acoustic scattering problems with complex geometries.
    Sun X; Jiang Y; Liang A; Jing X
    J Acoust Soc Am; 2012 Nov; 132(5):3190-9. PubMed ID: 23145603
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Shear wave velocity and attenuation in the upper layer of ocean bottoms from long-range acoustic field measurements.
    Zhou JX; Zhang XZ
    J Acoust Soc Am; 2012 Dec; 132(6):3698-705. PubMed ID: 23231101
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.