BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 27475142)

  • 21. A staggered-grid finite-difference method with perfectly matched layers for poroelastic wave equations.
    Zeng YQ; Liu QH
    J Acoust Soc Am; 2001 Jun; 109(6):2571-80. PubMed ID: 11425097
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comparison of highly efficient absorbing boundary conditions for the beam propagation method.
    Jiménez D; Pérez-Murano F
    J Opt Soc Am A Opt Image Sci Vis; 2001 Aug; 18(8):2015-25. PubMed ID: 11488508
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The aero-acoustic Galbrun equation in the time domain with perfectly matched layer boundary conditions.
    Feng X; Ben Tahar M; Baccouche R
    J Acoust Soc Am; 2016 Jan; 139(1):320-31. PubMed ID: 26827028
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nonuniform depth grids in parabolic equation solutions.
    Sanders WM; Collins MD
    J Acoust Soc Am; 2013 Apr; 133(4):1953-8. PubMed ID: 23556565
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Perfectly matched layers for frequency-domain integral equation acoustic scattering problems.
    Alles EJ; van Dongen KW
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 May; 58(5):1077-86. PubMed ID: 21622063
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A coupled modal-finite element method for the wave propagation modeling in irregular open waveguides.
    Pelat A; Felix S; Pagneux V
    J Acoust Soc Am; 2011 Mar; 129(3):1240-9. PubMed ID: 21428487
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Seismo-acoustic propagation near thin and low-shear speed ocean bottom sediments using a massive elastic interface.
    Collis JM; M Metzler A
    J Acoust Soc Am; 2014 Jan; 135(1):115-23. PubMed ID: 24437751
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Three-dimensional modeling of earthquake generated acoustic waves in the ocean in simplified configurations.
    Lecoulant J; Guennou C; Guillon L; Royer JY
    J Acoust Soc Am; 2019 Sep; 146(3):2113. PubMed ID: 31590531
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Three-dimensional propagation and scattering around a conical seamount.
    Luo W; Schmidt H
    J Acoust Soc Am; 2009 Jan; 125(1):52-65. PubMed ID: 19173394
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Structural-acoustic modeling for three-dimensional freefield and littoral environments with verification and validation.
    Dey S; Sarkissian A; Simpson H; Houston BH; Bulat FA; Kraus L; Saniga M; Bucaro JA
    J Acoust Soc Am; 2011 May; 129(5):2979-90. PubMed ID: 21568401
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dispersion of interface waves in sediments with power-law shear speed profiles. I. Exact and approximate analytical results.
    Godin OA; Chapman DM
    J Acoust Soc Am; 2001 Oct; 110(4):1890-907. PubMed ID: 11681370
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A perfectly matched layer applied to a reactive scattering problem.
    Nissen A; Karlsson HO; Kreiss G
    J Chem Phys; 2010 Aug; 133(5):054306. PubMed ID: 20707531
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Unified approach to split absorbing boundary conditions for nonlinear Schrödinger equations.
    Zhang J; Xu Z; Wu X
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Aug; 78(2 Pt 2):026709. PubMed ID: 18850975
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Simulation of three-dimensional waveguide discontinuities by a full-vector mode-matching method based on finite-difference schemes.
    Mu J; Huang WP
    Opt Express; 2008 Oct; 16(22):18152-63. PubMed ID: 18958093
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Numerical simulation of universal morphogenesis of fluid interface deformations driven by radiation pressure.
    Chesneau H; Chraïbi H; Bertin N; Petit J; Delville JP; Brasselet E; Wunenburger R
    Phys Rev E; 2022 Dec; 106(6-2):065104. PubMed ID: 36671126
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Simulations of photoacoustic wave propagation using a finite-difference time-domain method with Berenger's perfectly matched layers.
    Sheu YL; Li PC
    J Acoust Soc Am; 2008 Dec; 124(6):3471-80. PubMed ID: 19206776
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An Absorbing Boundary Condition for the Lattice Boltzmann Method Based on the Perfectly Matched Layer.
    Najafi-Yazdi A; Mongeau L
    Comput Fluids; 2012 Sep; 68():203-218. PubMed ID: 23526050
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mapped Chebyshev pseudo-spectral method for simulating the shear wave propagation in the plane of symmetry of a transversely isotropic viscoelastic medium.
    Qiang B; Brigham JC; McGough RJ; Greenleaf JF; Urban MW
    Med Biol Eng Comput; 2017 Mar; 55(3):389-401. PubMed ID: 27221812
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A finite difference method for a coupled model of wave propagation in poroelastic materials.
    Zhang Y; Song L; Deffenbaugh M; Toksöz MN
    J Acoust Soc Am; 2010 May; 127(5):2847-55. PubMed ID: 21117735
    [TBL] [Abstract][Full Text] [Related]  

  • 40. 3-D Quantum Transport Solver Based on the Perfectly Matched Layer and Spectral Element Methods for the Simulation of Semiconductor Nanodevices.
    Cheng C; Lee JH; Lim KH; Massoud HZ; Liu QH
    J Comput Phys; 2007 Nov; 227(1):455-471. PubMed ID: 18037971
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.