These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 27475330)

  • 21. Life cycle assessment and nutrient analysis of various processing pathways in algal biofuel production.
    Mu D; Ruan R; Addy M; Mack S; Chen P; Zhou Y
    Bioresour Technol; 2017 Apr; 230():33-42. PubMed ID: 28157562
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Optimization of process configuration and strain selection for microalgae-based biodiesel production.
    Yu N; Dieu LT; Harvey S; Lee DY
    Bioresour Technol; 2015 Oct; 193():25-34. PubMed ID: 26115529
    [TBL] [Abstract][Full Text] [Related]  

  • 23. An updated comprehensive techno-economic analysis of algae biodiesel.
    Nagarajan S; Chou SK; Cao S; Wu C; Zhou Z
    Bioresour Technol; 2013 Oct; 145():150-6. PubMed ID: 23260269
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Integrated microbial processes for biofuels and high value-added products: the way to improve the cost effectiveness of biofuel production.
    da Silva TL; Gouveia L; Reis A
    Appl Microbiol Biotechnol; 2014 Feb; 98(3):1043-53. PubMed ID: 24337249
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Microalgal production--a close look at the economics.
    Norsker NH; Barbosa MJ; Vermuë MH; Wijffels RH
    Biotechnol Adv; 2011; 29(1):24-7. PubMed ID: 20728528
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Butanol production in a first-generation Brazilian sugarcane biorefinery: technical aspects and economics of greenfield projects.
    Mariano AP; Dias MO; Junqueira TL; Cunha MP; Bonomi A; Filho RM
    Bioresour Technol; 2013 May; 135():316-23. PubMed ID: 23127845
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A biorefinery from Nannochloropsis sp. microalga - energy and CO2 emission and economic analyses.
    Ferreira AF; Ribeiro LA; Batista AP; Marques PA; Nobre BP; Palavra AM; da Silva PP; Gouveia L; Silva C
    Bioresour Technol; 2013 Jun; 138():235-44. PubMed ID: 23619136
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Techno-economical study of biogas production improved by steam explosion pretreatment.
    Shafiei M; Kabir MM; Zilouei H; Sárvári Horváth I; Karimi K
    Bioresour Technol; 2013 Nov; 148():53-60. PubMed ID: 24035891
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A GIS cost model to assess the availability of freshwater, seawater, and saline groundwater for algal biofuel production in the United States.
    Venteris ER; Skaggs RL; Coleman AM; Wigmosta MS
    Environ Sci Technol; 2013 May; 47(9):4840-9. PubMed ID: 23495893
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A techno-economic review of thermochemical cellulosic biofuel pathways.
    Brown TR
    Bioresour Technol; 2015 Feb; 178():166-176. PubMed ID: 25266684
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Production cost of a real microalgae production plant and strategies to reduce it.
    Acién FG; Fernández JM; Magán JJ; Molina E
    Biotechnol Adv; 2012; 30(6):1344-53. PubMed ID: 22361647
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Microalgae biofuel potentials (review).
    Ghasemi Y; Rasoul-Amini S; Naseri AT; Montazeri-Najafabady N; Mobasher MA; Dabbagh F
    Prikl Biokhim Mikrobiol; 2012; 48(2):150-68. PubMed ID: 22586908
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An assessment of the economic aspects of CO2 sequestration in a route for biodiesel production from microalgae.
    Soares FR; Martins G; Seo ES
    Environ Technol; 2013; 34(13-16):1777-81. PubMed ID: 24350434
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ten years of algal biofuel and bioproducts: gains and pains.
    Chen H; Li T; Wang Q
    Planta; 2019 Jan; 249(1):195-219. PubMed ID: 30603791
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Analysis of Economic and Environmental Aspects of Microalgae Biorefinery for Biofuels Production: A Review.
    Chia SR; Chew KW; Show PL; Yap YJ; Ong HC; Ling TC; Chang JS
    Biotechnol J; 2018 Jun; 13(6):e1700618. PubMed ID: 29356369
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Overcoming the Biological Contamination in Microalgae and Cyanobacteria Mass Cultivations for Photosynthetic Biofuel Production.
    Zhu Z; Jiang J; Fa Y
    Molecules; 2020 Nov; 25(22):. PubMed ID: 33182530
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biodiesel production process from microalgae oil by waste heat recovery and process integration.
    Song C; Chen G; Ji N; Liu Q; Kansha Y; Tsutsumi A
    Bioresour Technol; 2015 Oct; 193():192-9. PubMed ID: 26133477
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A Holistic Approach to Managing Microalgae for Biofuel Applications.
    Show PL; Tang MS; Nagarajan D; Ling TC; Ooi CW; Chang JS
    Int J Mol Sci; 2017 Jan; 18(1):. PubMed ID: 28117737
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Development and validation of a screening procedure of microalgae for biodiesel production: application to the genus of marine microalgae Nannochloropsis.
    Taleb A; Pruvost J; Legrand J; Marec H; Le-Gouic B; Mirabella B; Legeret B; Bouvet S; Peltier G; Li-Beisson Y; Taha S; Takache H
    Bioresour Technol; 2015 Feb; 177():224-32. PubMed ID: 25496942
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Assessing microalgae biorefinery routes for the production of biofuels via hydrothermal liquefaction.
    López Barreiro D; Samorì C; Terranella G; Hornung U; Kruse A; Prins W
    Bioresour Technol; 2014 Dec; 174():256-65. PubMed ID: 25463806
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.