These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 27475351)
1. Using a pruned, nondirect product basis in conjunction with the multi-configuration time-dependent Hartree (MCTDH) method. Wodraszka R; Carrington T J Chem Phys; 2016 Jul; 145(4):044110. PubMed ID: 27475351 [TBL] [Abstract][Full Text] [Related]
2. Systematically expanding nondirect product bases within the pruned multi-configuration time-dependent Hartree (MCTDH) method: A comparison with multi-layer MCTDH. Wodraszka R; Carrington T J Chem Phys; 2017 May; 146(19):194105. PubMed ID: 28527461 [TBL] [Abstract][Full Text] [Related]
3. A pruned collocation-based multiconfiguration time-dependent Hartree approach using a Smolyak grid for solving the Schrödinger equation with a general potential energy surface. Wodraszka R; Carrington T J Chem Phys; 2019 Apr; 150(15):154108. PubMed ID: 31005102 [TBL] [Abstract][Full Text] [Related]
4. Using a pruned basis and a sparse collocation grid with more points than basis functions to do efficient and accurate MCTDH calculations with general potential energy surfaces. Wodraszka R; Carrington T J Chem Phys; 2024 Jun; 160(21):. PubMed ID: 38836450 [TBL] [Abstract][Full Text] [Related]
5. A collocation-based multi-configuration time-dependent Hartree method using mode combination and improved relaxation. Wodraszka R; Carrington T J Chem Phys; 2020 Apr; 152(16):164117. PubMed ID: 32357767 [TBL] [Abstract][Full Text] [Related]
6. A rectangular collocation multi-configuration time-dependent Hartree (MCTDH) approach with time-independent points for calculations on general potential energy surfaces. Wodraszka R; Carrington T J Chem Phys; 2021 Mar; 154(11):114107. PubMed ID: 33752363 [TBL] [Abstract][Full Text] [Related]
7. Solving the vibrational Schrödinger equation using bases pruned to include strongly coupled functions and compatible quadratures. Avila G; Carrington T J Chem Phys; 2012 Nov; 137(17):174108. PubMed ID: 23145718 [TBL] [Abstract][Full Text] [Related]
8. A new collocation-based multi-configuration time-dependent Hartree (MCTDH) approach for solving the Schrödinger equation with a general potential energy surface. Wodraszka R; Carrington T J Chem Phys; 2018 Jan; 148(4):044115. PubMed ID: 29390829 [TBL] [Abstract][Full Text] [Related]
9. Assessing the utility of phase-space-localized basis functions: Exploiting direct product structure and a new basis function selection procedure. Brown J; Carrington T J Chem Phys; 2016 Jun; 144(24):244115. PubMed ID: 27369505 [TBL] [Abstract][Full Text] [Related]
10. A multilayer MCTDH study on the full dimensional vibronic dynamics of naphthalene and anthracene cations. Meng Q; Meyer HD J Chem Phys; 2013 Jan; 138(1):014313. PubMed ID: 23298047 [TBL] [Abstract][Full Text] [Related]
11. Iterative diagonalization in the multiconfigurational time-dependent Hartree approach: ro-vibrational eigenstates. Wodraszka R; Manthe U J Phys Chem A; 2013 Aug; 117(32):7246-55. PubMed ID: 23565665 [TBL] [Abstract][Full Text] [Related]
12. Dynamical pruning of the multiconfiguration time-dependent Hartree (DP-MCTDH) method: An efficient approach for multidimensional quantum dynamics. Larsson HR; Tannor DJ J Chem Phys; 2017 Jul; 147(4):044103. PubMed ID: 28764337 [TBL] [Abstract][Full Text] [Related]
13. Systematic and variational truncation of the configuration space in the multiconfiguration time-dependent Hartree method: The MCTDH[n] hierarchy. Madsen NK; Hansen MB; Worth GA; Christiansen O J Chem Phys; 2020 Feb; 152(8):084101. PubMed ID: 32113340 [TBL] [Abstract][Full Text] [Related]
14. Nonproduct quadrature grids for solving the vibrational Schrödinger equation. Avila G; Carrington T J Chem Phys; 2009 Nov; 131(17):174103. PubMed ID: 19894994 [TBL] [Abstract][Full Text] [Related]
15. Multidimensional time-dependent discrete variable representations in multiconfiguration Hartree calculations. van Harrevelt R; Manthe U J Chem Phys; 2005 Aug; 123(6):64106. PubMed ID: 16122299 [TBL] [Abstract][Full Text] [Related]
16. On the multi-layer multi-configurational time-dependent Hartree approach for bosons and fermions. Manthe U; Weike T J Chem Phys; 2017 Feb; 146(6):064117. PubMed ID: 28201897 [TBL] [Abstract][Full Text] [Related]
17. Full dimensional quantum-mechanical simulations for the vibronic dynamics of difluorobenzene radical cation isomers using the multilayer multiconfiguration time-dependent Hartree method. Meng Q; Faraji S; Vendrell O; Meyer HD J Chem Phys; 2012 Oct; 137(13):134302. PubMed ID: 23039594 [TBL] [Abstract][Full Text] [Related]
18. Computing vibrational energy levels by using mappings to fully exploit the structure of a pruned product basis. Cooper J; Carrington T J Chem Phys; 2009 Jun; 130(21):214110. PubMed ID: 19508059 [TBL] [Abstract][Full Text] [Related]
19. Finite basis representations with nondirect product basis functions having structure similar to that of spherical harmonics. Czakó G; Szalay V; Császár AG J Chem Phys; 2006 Jan; 124(1):14110. PubMed ID: 16409027 [TBL] [Abstract][Full Text] [Related]
20. Vibrational energy levels of the simplest Criegee intermediate (CH2OO) from full-dimensional Lanczos, MCTDH, and MULTIMODE calculations. Yu HG; Ndengue S; Li J; Dawes R; Guo H J Chem Phys; 2015 Aug; 143(8):084311. PubMed ID: 26328847 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]