These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 27475388)

  • 41. Organics on oxidic metal surfaces: a first-principles DFT study of PMDA and ODA fragments on the pristine and mildly oxidized surfaces of Cu(111).
    Park JH; Lee JH; Soon A
    Phys Chem Chem Phys; 2016 Aug; 18(31):21893-902. PubMed ID: 27440308
    [TBL] [Abstract][Full Text] [Related]  

  • 42. New insight into the mechanism of carbon dioxide activation on copper-based catalysts: A theoretical study.
    Ha NN; Thi Thu Ha N; Cam LM
    J Mol Graph Model; 2021 Sep; 107():107979. PubMed ID: 34217023
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Fe adsorption on hematite (α-Fe2O3) (0001) and magnetite (Fe3O4) (111) surfaces.
    Pabisiak T; Kiejna A
    J Chem Phys; 2014 Oct; 141(13):134707. PubMed ID: 25296828
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Incorrect DFT-GGA predictions of the stability of non-stoichiometric/polar dielectric surfaces: the case of Cu2O(111).
    Nilius N; Fedderwitz H; Groß B; Noguera C; Goniakowski J
    Phys Chem Chem Phys; 2016 Mar; 18(9):6729-33. PubMed ID: 26876056
    [TBL] [Abstract][Full Text] [Related]  

  • 45. CO
    Gálvez-González LE; Juárez-Sánchez JO; Pacheco-Contreras R; Garzón IL; Paz-Borbón LO; Posada-Amarillas A
    Phys Chem Chem Phys; 2018 Jun; 20(25):17071-17080. PubMed ID: 29896596
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Unravelling the early oxidation mechanism of zinc phosphide (Zn
    Dzade NY
    Phys Chem Chem Phys; 2020 Jan; 22(3):1444-1456. PubMed ID: 31859317
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Properties of the CdSe(0001), (0001), and (1120) single crystal surfaces: Relaxation, reconstruction, and adatom and admolecule adsorption.
    Rempel JY; Trout BL; Bawendi MG; Jensen KF
    J Phys Chem B; 2005 Oct; 109(41):19320-8. PubMed ID: 16853495
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Interaction of CO, O, and CO
    Padama AAB; Ocon JD; Nakanishi H; Kasai H
    J Phys Condens Matter; 2019 Oct; 31(41):415201. PubMed ID: 31220815
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Subsurface oxide plays a critical role in CO
    Favaro M; Xiao H; Cheng T; Goddard WA; Yano J; Crumlin EJ
    Proc Natl Acad Sci U S A; 2017 Jun; 114(26):6706-6711. PubMed ID: 28607092
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Enhanced adsorption of CO
    Deng X; Sorescu DC; Lee J
    Phys Chem Chem Phys; 2017 Feb; 19(7):5296-5303. PubMed ID: 28154866
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Studies of NO adsorption on Pt(110)-(1 x 2) and (1 x 1) surfaces using density functional theory.
    Orita H; Nakamura I; Fujitani T
    J Phys Chem B; 2005 May; 109(20):10312-8. PubMed ID: 16852249
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Effects of CO/CO2/NO on elemental lead adsorption on carbonaceous surfaces.
    Gao Z; Yang W
    J Mol Model; 2016 Jul; 22(7):166. PubMed ID: 27342251
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Integrated X-ray photoelectron spectroscopy and DFT characterization of benzene adsorption on Pt(111), Pt(355) and Pt(322) surfaces.
    Zhang R; Hensley AJ; McEwen JS; Wickert S; Darlatt E; Fischer K; Schöppke M; Denecke R; Streber R; Lorenz M; Papp C; Steinrück HP
    Phys Chem Chem Phys; 2013 Dec; 15(47):20662-71. PubMed ID: 24189500
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Surface-enhanced Raman scattering study of the redox adsorption of p-phenylenediamine on gold or copper surfaces.
    de Carvalho DF; da Fonseca BG; Barbosa IL; Landi SM; de Sena LÁ; Archanjo BS; Sant'Ana AC
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 Feb; 103():108-13. PubMed ID: 23257336
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Activation of CO
    Manae MA; Dheer L; Rai S; Shetty S; Waghmare UV
    Phys Chem Chem Phys; 2022 Jan; 24(3):1415-1423. PubMed ID: 34982078
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Role of axially coordinated surface sites for electrochemically controlled carbon monoxide adsorption on single crystal copper electrodes.
    Shaw SK; Berná A; Feliu JM; Nichols RJ; Jacob T; Schiffrin DJ
    Phys Chem Chem Phys; 2011 Mar; 13(12):5242-51. PubMed ID: 21253640
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Chemisorption of CO and mechanism of CO oxidation on supported platinum nanoclusters.
    Allian AD; Takanabe K; Fujdala KL; Hao X; Truex TJ; Cai J; Buda C; Neurock M; Iglesia E
    J Am Chem Soc; 2011 Mar; 133(12):4498-517. PubMed ID: 21366255
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Activation of CO
    Iyemperumal SK; Deskins NA
    Phys Chem Chem Phys; 2017 Nov; 19(42):28788-28807. PubMed ID: 29051932
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Oxygen-induced changes to selectivity-determining steps in electrocatalytic CO2 reduction.
    Zhang YJ; Peterson AA
    Phys Chem Chem Phys; 2015 Feb; 17(6):4505-15. PubMed ID: 25582895
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Electronic structure and spectra of (Cu2O)(n)-H2O complexes.
    Petsalakis ID; Theodorakopoulos G; Whitten J
    Phys Chem Chem Phys; 2015 Jan; 17(1):428-33. PubMed ID: 25407888
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.