These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

67 related articles for article (PubMed ID: 27475548)

  • 1. Long working distance objective lenses for single atom trapping and imaging.
    Pritchard JD; Isaacs JA; Saffman M
    Rev Sci Instrum; 2016 Jul; 87(7):073107. PubMed ID: 27475548
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-numerical-aperture and long-working-distance objective for single-atom experiments.
    Li S; Li G; Wu W; Fan Q; Tian Y; Yang P; Zhang P; Zhang T
    Rev Sci Instrum; 2020 Apr; 91(4):043104. PubMed ID: 32357718
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-resolution ex vacuo objective for cold atom experiments.
    Li X; Zhou F; Ke M; Xu P; He XD; Wang J; Zhan MS
    Appl Opt; 2018 Sep; 57(26):7584-7590. PubMed ID: 30461825
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A versatile high resolution objective for imaging quantum gases.
    Bennie LM; Starkey PT; Jasperse M; Billington CJ; Anderson RP; Turner LD
    Opt Express; 2013 Apr; 21(7):9011-6. PubMed ID: 23571991
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An adaptable two-lens high-resolution objective for single-site resolved imaging of atoms in optical lattices.
    Gempel MW; Hartmann T; Schulze TA; Voges KK; Zenesini A; Ospelkaus S
    Rev Sci Instrum; 2019 May; 90(5):053201. PubMed ID: 31153293
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Versatile objectives with NA = 0.55 and NA = 0.78 for cold-atom experiments.
    Li S; Li G; Yang P; Wang Z; Zhang P; Zhang T
    Opt Express; 2020 Nov; 28(24):36122-36130. PubMed ID: 33379714
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-resolution imaging of Rydberg atoms in optical lattices using an aspheric-lens objective in vacuum.
    Shen C; Chen C; Wu XL; Dong S; Cui Y; You L; Tey MK
    Rev Sci Instrum; 2020 Jun; 91(6):063202. PubMed ID: 32611022
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microlensed dual-fiber probe for depth-resolved fluorescence measurements.
    Choi HY; Ryu SY; Kim JY; Kim GH; Park SJ; Lee BH; Chang KS
    Opt Express; 2011 Jul; 19(15):14172-81. PubMed ID: 21934780
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accommodating intraocular lenses: a critical review of present and future concepts.
    Menapace R; Findl O; Kriechbaum K; Leydolt-Koeppl Ch
    Graefes Arch Clin Exp Ophthalmol; 2007 Apr; 245(4):473-89. PubMed ID: 16944188
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging.
    Khorasaninejad M; Chen WT; Devlin RC; Oh J; Zhu AY; Capasso F
    Science; 2016 Jun; 352(6290):1190-4. PubMed ID: 27257251
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optical microscopy with flexible axial capabilities using a vari-focus liquid lens.
    Qu Y; Yang H
    J Microsc; 2015 Jun; 258(3):212-22. PubMed ID: 25817930
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of microscope objective lenses from 1,400 to 1,650 nm to evaluate performance for long-wavelength nonlinear microscopy applications.
    Keatings SR; Zhang W; McConnell G
    Microsc Res Tech; 2008 Jul; 71(7):517-20. PubMed ID: 18314867
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optical trapping of colloidal particles and cells by focused evanescent fields using conical lenses.
    Yoon YZ; Cicuta P
    Opt Express; 2010 Mar; 18(7):7076-84. PubMed ID: 20389728
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Short-term visual performance of soft multifocal contact lenses for presbyopia.
    Sha J; Bakaraju RC; Tilia D; Chung J; Delaney S; Munro A; Ehrmann K; Thomas V; Holden BA
    Arq Bras Oftalmol; 2016 Apr; 79(2):73-7. PubMed ID: 27224066
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of intermediary scan-lens and tube-lens mechanisms for optical coherence tomography.
    Atry F; Pashaie R
    Appl Opt; 2016 Feb; 55(4):646-53. PubMed ID: 26836064
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modified integrated optic Fresnal lens for waveguide-to-fiber coupling.
    McGaugh MK; Verber CM; Kenan RP
    Appl Opt; 1995 Mar; 34(9):1562-8. PubMed ID: 21037697
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Angle-invariant imaging using a total internal reflection virtual aperture.
    Agurok IP; Ford JE
    Appl Opt; 2016 Jul; 55(20):5345-52. PubMed ID: 27409309
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Versatile objective lens with adjustable correction for different wavelengths and substrate thicknesses for testing optical disks.
    Gerber RE; Mansuripur M; Sasián JM
    Appl Opt; 1997 Apr; 36(11):2414-20. PubMed ID: 18253221
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adjustable-focus ultracompact endoscopic lens design with ultrahigh optical performance.
    Chang YS; Hsu L; Huang KL
    Appl Opt; 2018 Feb; 57(5):1091-1099. PubMed ID: 29469892
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Compensation of chromatic errors in high na molded objective lenses.
    Milster TD; Gerber RE
    Appl Opt; 1995 Dec; 34(34):8079-80. PubMed ID: 21068919
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.