These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
110 related articles for article (PubMed ID: 27475567)
1. A uniaxial stress capacitive dilatometer for high-resolution thermal expansion and magnetostriction under multiextreme conditions. Küchler R; Stingl C; Gegenwart P Rev Sci Instrum; 2016 Jul; 87(7):073903. PubMed ID: 27475567 [TBL] [Abstract][Full Text] [Related]
2. The world's smallest capacitive dilatometer, for high-resolution thermal expansion and magnetostriction in high magnetic fields. Küchler R; Wörl A; Gegenwart P; Berben M; Bryant B; Wiedmann S Rev Sci Instrum; 2017 Aug; 88(8):083903. PubMed ID: 28863703 [TBL] [Abstract][Full Text] [Related]
3. A compact and miniaturized high resolution capacitance dilatometer for measuring thermal expansion and magnetostriction. Küchler R; Bauer T; Brando M; Steglich F Rev Sci Instrum; 2012 Sep; 83(9):095102. PubMed ID: 23020414 [TBL] [Abstract][Full Text] [Related]
4. Simultaneous measurement of magnetization and magnetostriction in 50 T pulsed high magnetic fields. Doerr M; Lorenz W; Neupert T; Loewenhaupt M; Kozlova NV; Freudenberger J; Bartkowiak M; Kampert E; Rotter M Rev Sci Instrum; 2008 Jun; 79(6):063902. PubMed ID: 18601412 [TBL] [Abstract][Full Text] [Related]
5. High resolution miniature dilatometer based on an atomic force microscope piezocantilever. Park JH; Graf D; Murphy TP; Schmiedeshoff GM; Tozer SW Rev Sci Instrum; 2009 Nov; 80(11):116101. PubMed ID: 19947765 [TBL] [Abstract][Full Text] [Related]
6. Novel quantum criticality in CeRu2Si2 near absolute zero observed by thermal expansion and magnetostriction. Yoshida J; Abe S; Takahashi D; Segawa Y; Komai Y; Tsujii H; Matsumoto K; Suzuki H; Onuki Y Phys Rev Lett; 2008 Dec; 101(25):256402. PubMed ID: 19113729 [TBL] [Abstract][Full Text] [Related]
7. Capacitive detection of magnetostriction, dielectric constant, and magneto-caloric effects in pulsed magnetic fields. Miyake A; Mitamura H; Kawachi S; Kimura K; Kimura T; Kihara T; Tachibana M; Tokunaga M Rev Sci Instrum; 2020 Oct; 91(10):105103. PubMed ID: 33138569 [TBL] [Abstract][Full Text] [Related]
8. High-resolution thermal expansion measurements under helium-gas pressure. Manna RS; Wolf B; de Souza M; Lang M Rev Sci Instrum; 2012 Aug; 83(8):085111. PubMed ID: 22938336 [TBL] [Abstract][Full Text] [Related]
9. New applications for the world's smallest high-precision capacitance dilatometer and its stress-implementing counterpart. Küchler R; Wawrzyńczak R; Dawczak-Dębicki H; Gooth J; Galeski S Rev Sci Instrum; 2023 Apr; 94(4):. PubMed ID: 38081236 [TBL] [Abstract][Full Text] [Related]
10. A temperature-modulated dilatometer by using a piezobender-based device. Gu Y; Liu B; Hong W; Liu Z; Zhang W; Ma X; Li S Rev Sci Instrum; 2020 Dec; 91(12):123901. PubMed ID: 33379959 [TBL] [Abstract][Full Text] [Related]
11. A high resolution dilatometer using optical fiber interferometer. Qin X; Cao G; Geng M; Liu S; Liu Y Rev Sci Instrum; 2024 May; 95(5):. PubMed ID: 38780389 [TBL] [Abstract][Full Text] [Related]
12. Capacitive-based dilatometer cell constructed of fused quartz for measuring the thermal expansion of solids. Neumeier JJ; Bollinger RK; Timmins GE; Lane CR; Krogstad RD; Macaluso J Rev Sci Instrum; 2008 Mar; 79(3):033903. PubMed ID: 18377021 [TBL] [Abstract][Full Text] [Related]
13. Thermal expansion and magnetostriction of pure and doped RAgSb(2) (R = Y, Sm, La) single crystals. Bud'ko SL; Law SA; Canfield PC; Samolyuk GD; Torikachvili MS; Schmiedeshoff GM J Phys Condens Matter; 2008 Mar; 20(11):115210. PubMed ID: 21694227 [TBL] [Abstract][Full Text] [Related]
14. Miniature capacitive Faraday force magnetometer for magnetization measurements at low temperatures and high magnetic fields. Blosser D; Facheris L; Zheludev A Rev Sci Instrum; 2020 Jul; 91(7):073905. PubMed ID: 32752876 [TBL] [Abstract][Full Text] [Related]
15. Sapphire dilatometer cell for measuring the thermal expansion of solids. Neumeier JJ; Nelson GA Rev Sci Instrum; 2022 Jun; 93(6):063903. PubMed ID: 35778030 [TBL] [Abstract][Full Text] [Related]
16. Thermal Expansion and Magnetostriction Measurements at Cryogenic Temperature Using the Strain Gauge Method. Wang W; Liu H; Huang R; Zhao Y; Huang C; Guo S; Shan Y; Li L Front Chem; 2018; 6():72. PubMed ID: 29616217 [TBL] [Abstract][Full Text] [Related]
17. Dilatometer setup for low coefficient of thermal expansion materials measurements in the 140 K-250 K temperature range. Spannagel R; Hamann I; Sanjuan J; Schuldt T; Gohlke M; Johann U; Weise D; Braxmaier C Rev Sci Instrum; 2016 Oct; 87(10):103112. PubMed ID: 27802733 [TBL] [Abstract][Full Text] [Related]
18. An ultra-compact low temperature scanning probe microscope for magnetic fields above 30 T. Rossi L; Gerritsen JW; Nelemans L; Khajetoorians AA; Bryant B Rev Sci Instrum; 2018 Nov; 89(11):113706. PubMed ID: 30501346 [TBL] [Abstract][Full Text] [Related]
19. Low temperature thermal expansion measurements on optical materials. Browder JS; Ballard SS Appl Opt; 1969 Apr; 8(4):793-8. PubMed ID: 20072314 [TBL] [Abstract][Full Text] [Related]
20. A rapid heating and cooling rate dilatometer for measuring thermal expansion in dental porcelain. Twiggs SW; Searle JR; Ringle RD; Fairhurst CW J Dent Res; 1989 Sep; 68(9):1316-8. PubMed ID: 2778175 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]