These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 27475585)

  • 41. Time-resolved temperature-jump measurements and steady-state thermal imaging of nanoscale heat transfer of gold nanostructures on AlGaN:Er
    Shrestha K; Vicente JR; Miandashti AR; Chen J; Richardson HH
    J Chem Phys; 2020 Jan; 152(3):034706. PubMed ID: 31968975
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Mapping nanoscale thermal transfer in-liquid environment-immersion scanning thermal microscopy.
    Tovee PD; Kolosov OV
    Nanotechnology; 2013 Nov; 24(46):465706. PubMed ID: 24164803
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Probing the temperature dependence of the mechanical properties of polymers at the nanoscale with band excitation thermal scanning probe microscopy.
    Nikiforov MP; Jesse S; Morozovska AN; Eliseev EA; Germinario LT; Kalinin SV
    Nanotechnology; 2009 Sep; 20(39):395709. PubMed ID: 19726838
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Tuning temperature and size of hot spots and hot-spot arrays.
    Saïdi E; Babinet N; Lalouat L; Lesueur J; Aigouy L; Volz S; Labéguerie-Egéa J; Mortier M
    Small; 2011 Jan; 7(2):259-64. PubMed ID: 21213391
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Multitip Near-Field Scanning Thermal Microscopy.
    Ben-Abdallah P
    Phys Rev Lett; 2019 Dec; 123(26):264301. PubMed ID: 31951445
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Dimension- and shape-dependent thermal transport in nano-patterned thin films investigated by scanning thermal microscopy.
    Ge Y; Zhang Y; Weaver JMR; Dobson PS
    Nanotechnology; 2017 Dec; 28(48):485706. PubMed ID: 29035274
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A model of heat transfer in sapwood and implications for sap flux density measurements using thermal dissipation probes.
    Wullschleger SD; Childs KW; King AW; Hanson PJ
    Tree Physiol; 2011 Jun; 31(6):669-79. PubMed ID: 21743059
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Nanoscale characterization of the thermal interface resistance of a heat-sink composite material by in situ TEM.
    Kawamoto N; Kakefuda Y; Mori T; Hirose K; Mitome M; Bando Y; Golberg D
    Nanotechnology; 2015 Nov; 26(46):465705. PubMed ID: 26508524
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Quantitative thermal microscopy using thermoelectric probe in passive mode.
    Bontempi A; Thiery L; Teyssieux D; Briand D; Vairac P
    Rev Sci Instrum; 2013 Oct; 84(10):103703. PubMed ID: 24182115
    [TBL] [Abstract][Full Text] [Related]  

  • 50. High temperature thermal conductivity of platinum microwire by 3ω method.
    Bhatta RP; Annamalai S; Mohr RK; Brandys M; Pegg IL; Dutta B
    Rev Sci Instrum; 2010 Nov; 81(11):114904. PubMed ID: 21133493
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Thermal transport into graphene through nanoscopic contacts.
    Menges F; Riel H; Stemmer A; Dimitrakopoulos C; Gotsmann B
    Phys Rev Lett; 2013 Nov; 111(20):205901. PubMed ID: 24289696
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Transient thermal dissipation method for xylem sap flow measurement: implementation with a single probe.
    Do FC; Isarangkool Na Ayutthaya S; Rocheteau A
    Tree Physiol; 2011 Apr; 31(4):369-80. PubMed ID: 21498407
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Near-Field Thermometry Sensor Based on the Thermal Resonance of a Microcantilever in Aqueous Medium.
    Kim S; Kim KC; Kihm KD
    Sensors (Basel); 2007 Dec; 7(12):3156-3165. PubMed ID: 28903286
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Heat dissipation from suspended self-heated nanowires: gas sensor prospective.
    Zhang J; Strelcov E; Kolmakov A
    Nanotechnology; 2013 Nov; 24(44):444009. PubMed ID: 24113219
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Nanoscale resolution scanning thermal microscopy using carbon nanotube tipped thermal probes.
    Tovee PD; Pumarol ME; Rosamond MC; Jones R; Petty MC; Zeze DA; Kolosov OV
    Phys Chem Chem Phys; 2014 Jan; 16(3):1174-81. PubMed ID: 24292551
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Thermometry with Subnanometer Resolution in the Electron Microscope Using the Principle of Detailed Balancing.
    Lagos MJ; Batson PE
    Nano Lett; 2018 Jul; 18(7):4556-4563. PubMed ID: 29874456
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Invited Review Article: Microwave spectroscopy based on scanning thermal microscopy: resolution in the nanometer range.
    Meckenstock R
    Rev Sci Instrum; 2008 Apr; 79(4):041101. PubMed ID: 18447516
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Combined low-temperature scanning tunneling/atomic force microscope for atomic resolution imaging and site-specific force spectroscopy.
    Albers BJ; Liebmann M; Schwendemann TC; Baykara MZ; Heyde M; Salmeron M; Altman EI; Schwarz UD
    Rev Sci Instrum; 2008 Mar; 79(3):033704. PubMed ID: 18377012
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Monitoring local heating around an interventional MRI antenna with RF radiometry.
    Ertürk MA; El-Sharkawy AM; Bottomley PA
    Med Phys; 2015 Mar; 42(3):1411-23. PubMed ID: 25735295
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Quantitative temperature measurement of an electrically heated carbon nanotube using the null-point method.
    Chung J; Kim K; Hwang G; Kwon O; Jung S; Lee J; Lee JW; Kim GT
    Rev Sci Instrum; 2010 Nov; 81(11):114901. PubMed ID: 21133490
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.