BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 27475771)

  • 1. Prediction of FAD binding sites in electron transport proteins according to efficient radial basis function networks and significant amino acid pairs.
    Le NQ; Ou YY
    BMC Bioinformatics; 2016 Jul; 17():298. PubMed ID: 27475771
    [TBL] [Abstract][Full Text] [Related]  

  • 2. FAD-BERT: Improved prediction of FAD binding sites using pre-training of deep bidirectional transformers.
    Ho QT; Nguyen TT; Khanh Le NQ; Ou YY
    Comput Biol Med; 2021 Apr; 131():104258. PubMed ID: 33601085
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Incorporating efficient radial basis function networks and significant amino acid pairs for predicting GTP binding sites in transport proteins.
    Le NQ; Ou YY
    BMC Bioinformatics; 2016 Dec; 17(Suppl 19):501. PubMed ID: 28155651
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ETMB-RBF: discrimination of metal-binding sites in electron transporters based on RBF networks with PSSM profiles and significant amino acid pairs.
    Ou YY; Chen SA; Wu SC
    PLoS One; 2013; 8(2):e46572. PubMed ID: 23405059
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of FAD interacting residues in a protein from its primary sequence using evolutionary information.
    Mishra NK; Raghava GP
    BMC Bioinformatics; 2010 Jan; 11 Suppl 1(Suppl 1):S48. PubMed ID: 20122222
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identifying the molecular functions of electron transport proteins using radial basis function networks and biochemical properties.
    Le NQ; Nguyen TT; Ou YY
    J Mol Graph Model; 2017 May; 73():166-178. PubMed ID: 28285094
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Why the Flavin Adenine Dinucleotide (FAD) Cofactor Needs To Be Covalently Linked to Complex II of the Electron-Transport Chain for the Conversion of FADH
    Dourado DFAR; Swart M; Carvalho ATP
    Chemistry; 2018 Apr; 24(20):5246-5252. PubMed ID: 29124817
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ATP binding and aspartate protonation enhance photoinduced electron transfer in plant cryptochrome.
    Cailliez F; Müller P; Gallois M; de la Lande A
    J Am Chem Soc; 2014 Sep; 136(37):12974-86. PubMed ID: 25157750
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prokaryotic assembly factors for the attachment of flavin to complex II.
    McNeil MB; Fineran PC
    Biochim Biophys Acta; 2013 May; 1827(5):637-47. PubMed ID: 22985599
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting FAD Interacting Residues with Feature Selection and Comprehensive Sequence Descriptors.
    Yang R; Zhang C; Gao R; Zhang L; Song Q
    IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(6):2046-2056. PubMed ID: 29993986
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mutagenesis study of the 2Fe-2S center and the FAD binding site of the Na(+)-translocating NADH:ubiquinone oxidoreductase from Vibrio cholerae.
    Barquera B; Nilges MJ; Morgan JE; Ramirez-Silva L; Zhou W; Gennis RB
    Biochemistry; 2004 Sep; 43(38):12322-30. PubMed ID: 15379571
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of a bifunctional PutA homologue from Bradyrhizobium japonicum and identification of an active site residue that modulates proline reduction of the flavin adenine dinucleotide cofactor.
    Krishnan N; Becker DF
    Biochemistry; 2005 Jun; 44(25):9130-9. PubMed ID: 15966737
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electron transfer in flavocytochrome P450 BM3: kinetics of flavin reduction and oxidation, the role of cysteine 999, and relationships with mammalian cytochrome P450 reductase.
    Roitel O; Scrutton NS; Munro AW
    Biochemistry; 2003 Sep; 42(36):10809-21. PubMed ID: 12962506
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ET-GRU: using multi-layer gated recurrent units to identify electron transport proteins.
    Le NQK; Yapp EKY; Yeh HY
    BMC Bioinformatics; 2019 Jul; 20(1):377. PubMed ID: 31277574
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting flavin and nicotinamide adenine dinucleotide-binding sites in proteins using the fragment transformation method.
    Lu CH; Yu CS; Lin YF; Chen JY
    Biomed Res Int; 2015; 2015():402536. PubMed ID: 26000290
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of functioning of mitochondrial electron transport chain with NADH and FAD autofluorescence.
    Danylovych HV
    Ukr Biochem J; 2016; 88(1):31-43. PubMed ID: 29227076
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SVM based prediction of RNA-binding proteins using binding residues and evolutionary information.
    Kumar M; Gromiha MM; Raghava GP
    J Mol Recognit; 2011; 24(2):303-13. PubMed ID: 20677174
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure-based classification of FAD binding sites: A comparative study of structural alignment tools.
    Garma LD; Medina M; Juffer AH
    Proteins; 2016 Nov; 84(11):1728-1747. PubMed ID: 27580869
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The intraflavin hydrogen bond in human electron transfer flavoprotein modulates redox potentials and may participate in electron transfer.
    Dwyer TM; Mortl S; Kemter K; Bacher A; Fauq A; Frerman FE
    Biochemistry; 1999 Jul; 38(30):9735-45. PubMed ID: 10423253
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Measurement of mitochondrial NADH and FAD autofluorescence in live cells.
    Bartolomé F; Abramov AY
    Methods Mol Biol; 2015; 1264():263-70. PubMed ID: 25631020
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.