These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

332 related articles for article (PubMed ID: 27476100)

  • 1. The impact of inflammation on respiratory plasticity.
    Hocker AD; Stokes JA; Powell FL; Huxtable AG
    Exp Neurol; 2017 Jan; 287(Pt 2):243-253. PubMed ID: 27476100
    [TBL] [Abstract][Full Text] [Related]  

  • 2. IL-1 receptor activation undermines respiratory motor plasticity after systemic inflammation.
    Hocker AD; Huxtable AG
    J Appl Physiol (1985); 2018 Aug; 125(2):504-512. PubMed ID: 29565772
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Systemic inflammation suppresses spinal respiratory motor plasticity via mechanisms that require serine/threonine protein phosphatase activity.
    Tadjalli A; Seven YB; Perim RR; Mitchell GS
    J Neuroinflammation; 2021 Jan; 18(1):28. PubMed ID: 33468163
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intermittent hypoxia and respiratory plasticity in humans and other animals: does exposure to intermittent hypoxia promote or mitigate sleep apnoea?
    Mateika JH; Narwani G
    Exp Physiol; 2009 Mar; 94(3):279-96. PubMed ID: 19060117
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intermittent Hypoxia-Induced Spinal Inflammation Impairs Respiratory Motor Plasticity by a Spinal p38 MAP Kinase-Dependent Mechanism.
    Huxtable AG; Smith SM; Peterson TJ; Watters JJ; Mitchell GS
    J Neurosci; 2015 Apr; 35(17):6871-80. PubMed ID: 25926462
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acute morphine blocks spinal respiratory motor plasticity via long-latency mechanisms that require toll-like receptor 4 signalling.
    Tadjalli A; Seven YB; Sharma A; McCurdy CR; Bolser DC; Levitt ES; Mitchell GS
    J Physiol; 2021 Aug; 599(15):3771-3797. PubMed ID: 34142718
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Competing mechanisms of plasticity impair compensatory responses to repetitive apnoea.
    Fields DP; Braegelmann KM; Meza AL; Mickelson CR; Gumnit MG; Baker TL
    J Physiol; 2019 Aug; 597(15):3951-3967. PubMed ID: 31280489
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reactive oxygen species and respiratory plasticity following intermittent hypoxia.
    MacFarlane PM; Wilkerson JE; Lovett-Barr MR; Mitchell GS
    Respir Physiol Neurobiol; 2008 Dec; 164(1-2):263-71. PubMed ID: 18692605
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Respiratory neuroplasticity: Mechanisms and translational implications of phrenic motor plasticity.
    Mitchell GS; Baker TL
    Handb Clin Neurol; 2022; 188():409-432. PubMed ID: 35965036
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cyclooxygenase enzyme activity does not impair respiratory motor plasticity after one night of intermittent hypoxia.
    Huxtable AG; Kopp E; Dougherty BJ; Watters JJ; Mitchell GS
    Respir Physiol Neurobiol; 2018 Oct; 256():21-28. PubMed ID: 29233741
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ampakine pretreatment enables a single brief hypoxic episode to evoke phrenic motor facilitation.
    Wollman LB; Streeter KA; Fuller DD
    J Neurophysiol; 2020 Mar; 123(3):993-1003. PubMed ID: 31940229
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acute intermittent hypercapnic-hypoxia elicits central neural respiratory motor plasticity in humans.
    Welch JF; Nair J; Argento PJ; Mitchell GS; Fox EJ
    J Physiol; 2022 May; 600(10):2515-2533. PubMed ID: 35348218
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spinal protein phosphatase 1 constrains respiratory plasticity after sustained hypoxia.
    Huxtable AG; Peterson TJ; Ouellette JN; Watters JJ; Mitchell GS
    J Appl Physiol (1985); 2018 Nov; 125(5):1440-1446. PubMed ID: 30161006
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Systemic inflammation inhibits serotonin receptor 2-induced phrenic motor facilitation upstream from BDNF/TrkB signaling.
    Agosto-Marlin IM; Nichols NL; Mitchell GS
    J Neurophysiol; 2018 Jun; 119(6):2176-2185. PubMed ID: 29513151
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Invited review: Intermittent hypoxia and respiratory plasticity.
    Mitchell GS; Baker TL; Nanda SA; Fuller DD; Zabka AG; Hodgeman BA; Bavis RW; Mack KJ; Olson EB
    J Appl Physiol (1985); 2001 Jun; 90(6):2466-75. PubMed ID: 11356815
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Is there a link between intermittent hypoxia-induced respiratory plasticity and obstructive sleep apnoea?
    Mahamed S; Mitchell GS
    Exp Physiol; 2007 Jan; 92(1):27-37. PubMed ID: 17099064
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Respiratory neuroplasticity - Overview, significance and future directions.
    Fuller DD; Mitchell GS
    Exp Neurol; 2017 Jan; 287(Pt 2):144-152. PubMed ID: 27208699
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acute intermittent hypoxia induced neural plasticity in respiratory motor control.
    Xing T; Fong AY; Bautista TG; Pilowsky PM
    Clin Exp Pharmacol Physiol; 2013 Sep; 40(9):602-9. PubMed ID: 23781949
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acute intermittent hypoxia increases both phrenic and sympathetic nerve activities in the rat.
    Dick TE; Hsieh YH; Wang N; Prabhakar N
    Exp Physiol; 2007 Jan; 92(1):87-97. PubMed ID: 17138622
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plasticity in respiratory motor neurons in response to reduced synaptic inputs: A form of homeostatic plasticity in respiratory control?
    Braegelmann KM; Streeter KA; Fields DP; Baker TL
    Exp Neurol; 2017 Jan; 287(Pt 2):225-234. PubMed ID: 27456270
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.