These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 27476493)

  • 1. Comparative performance of airyscan and structured illumination superresolution microscopy in the study of the surface texture and 3D shape of pollen.
    Sivaguru M; Urban MA; Fried G; Wesseln CJ; Mander L; Punyasena SW
    Microsc Res Tech; 2018 Feb; 81(2):101-114. PubMed ID: 27476493
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Capturing the surface texture and shape of pollen: a comparison of microscopy techniques.
    Sivaguru M; Mander L; Fried G; Punyasena SW
    PLoS One; 2012; 7(6):e39129. PubMed ID: 22720050
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highly photostable, reversibly photoswitchable fluorescent protein with high contrast ratio for live-cell superresolution microscopy.
    Zhang X; Zhang M; Li D; He W; Peng J; Betzig E; Xu P
    Proc Natl Acad Sci U S A; 2016 Sep; 113(37):10364-9. PubMed ID: 27562163
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Potential of CLSM in studying some modern and fossil palynological objects.
    Gavrilova O; Zavialova N; Tekleva M; Karasev E
    J Microsc; 2018 Mar; 269(3):291-309. PubMed ID: 28940409
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improving the taxonomy of fossil pollen using convolutional neural networks and superresolution microscopy.
    Romero IC; Kong S; Fowlkes CC; Jaramillo C; Urban MA; Oboh-Ikuenobe F; D'Apolito C; Punyasena SW
    Proc Natl Acad Sci U S A; 2020 Nov; 117(45):28496-28505. PubMed ID: 33097671
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Answers to fundamental questions in superresolution microscopy.
    Heintzmann R
    Philos Trans A Math Phys Eng Sci; 2021 Jun; 379(2199):20210105. PubMed ID: 33896198
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metamaterial assisted illumination nanoscopy via random super-resolution speckles.
    Lee YU; Zhao J; Ma Q; Khorashad LK; Posner C; Li G; Wisna GBM; Burns Z; Zhang J; Liu Z
    Nat Commun; 2021 Mar; 12(1):1559. PubMed ID: 33692354
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Confocal Reflection Super-Resolution Technique to Image Golgi-Cox Stained Neurons.
    Sivaguru M; Khaw YM; Inoue M
    J Microsc; 2019 Aug; 275(2):115-130. PubMed ID: 31237354
    [TBL] [Abstract][Full Text] [Related]  

  • 9. csiLSFM combines light-sheet fluorescence microscopy and coherent structured illumination for a lateral resolution below 100 nm.
    Chang BJ; Perez Meza VD; Stelzer EHK
    Proc Natl Acad Sci U S A; 2017 May; 114(19):4869-4874. PubMed ID: 28438995
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanoscale imaging by superresolution fluorescence microscopy and its emerging applications in biomedical research.
    Bertocchi C; Goh WI; Zhang Z; Kanchanawong P
    Crit Rev Biomed Eng; 2013; 41(4-5):281-308. PubMed ID: 24941410
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Practical limitations of superresolution imaging due to conventional sample preparation revealed by a direct comparison of CLSM, SIM and dSTORM.
    Bachmann M; Fiederling F; Bastmeyer M
    J Microsc; 2016 Jun; 262(3):306-15. PubMed ID: 26694787
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative pollen morphological analysis in the subgenera Passiflora and Decaloba.
    Soares TL; Jesus ON; Souza EH; Rossi ML; Oliveira EJ
    An Acad Bras Cienc; 2018 Aug; 90(2 suppl 1):2381-2396. PubMed ID: 29044321
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Complementary Superresolution Visualization of Composite Plant Microtubule Organization and Dynamics.
    Vavrdová T; Křenek P; Ovečka M; Šamajová O; Floková P; Illešová P; Šnaurová R; Šamaj J; Komis G
    Front Plant Sci; 2020; 11():693. PubMed ID: 32582243
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Seeing more with structured illumination microscopy.
    Fiolka R
    Methods Cell Biol; 2014; 123():295-313. PubMed ID: 24974034
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-dimensional super-resolution structured illumination microscopy with maximum a posteriori probability image estimation.
    Lukeš T; Křížek P; Švindrych Z; Benda J; Ovesný M; Fliegel K; Klíma M; Hagen GM
    Opt Express; 2014 Dec; 22(24):29805-17. PubMed ID: 25606910
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Full-color structured illumination optical sectioning microscopy.
    Qian J; Lei M; Dan D; Yao B; Zhou X; Yang Y; Yan S; Min J; Yu X
    Sci Rep; 2015 Sep; 5():14513. PubMed ID: 26415516
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Superresolution Imaging of Cytoskeletal Networks in Fixed Brain Tissue.
    Hicks AI; Zhou S; Yang J; Prager-Khoutorsky M
    Methods Mol Biol; 2022; 2515():171-191. PubMed ID: 35776352
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structured illumination superresolution imaging of the cytoskeleton.
    Engel U
    Methods Cell Biol; 2014; 123():315-33. PubMed ID: 24974035
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fluorescence in situ hybridization applications for super-resolution 3D structured illumination microscopy.
    Markaki Y; Smeets D; Cremer M; Schermelleh L
    Methods Mol Biol; 2013; 950():43-64. PubMed ID: 23086869
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Superresolution Microscopy for Visualization of Physical Contacts Between Chromosomes at Nanoscale Resolution.
    Yu Z; Potapova TA
    Methods Mol Biol; 2022; 2458():359-375. PubMed ID: 35103978
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.