These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

66 related articles for article (PubMed ID: 27476535)

  • 1. Post-combustion carbon dioxide capture cost reduction to 2030 and beyond.
    Adderley B; Carey J; Gibbins J; Lucquiaud M; Smith R
    Faraday Discuss; 2016 Oct; 192():27-35. PubMed ID: 27476535
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Performance and Cost Analysis of Natural Gas Combined Cycle Plants with Chemical Looping Combustion.
    Oh DH; Lee CH; Lee JC
    ACS Omega; 2021 Aug; 6(32):21043-21058. PubMed ID: 34423212
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exploring the role of natural gas power plants with carbon capture and storage as a bridge to a low-carbon future.
    Babaee S; Loughlin DH
    Clean Technol Environ Policy; 2017 Dec; 20(2):379-391. PubMed ID: 32461751
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Economic leverage affords post-combustion capture of 43% of carbon emissions: Supersonic separators for methanol hydrate inhibitor recovery from raw natural gas and CO
    Teixeira AM; Arinelli LO; de Medeiros JL; Araújo OQF
    J Environ Manage; 2019 Apr; 236():534-550. PubMed ID: 30771673
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electricity generation: options for reduction in carbon emissions.
    Whittington HW
    Philos Trans A Math Phys Eng Sci; 2002 Aug; 360(1797):1653-68. PubMed ID: 12460490
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Absorber modeling for NGCC carbon capture with aqueous piperazine.
    Zhang Y; Freeman B; Hao P; Rochelle GT
    Faraday Discuss; 2016 Oct; 192():459-477. PubMed ID: 27506495
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dual phase high-temperature membranes for CO
    Anantharaman R; Peters T; Xing W; Fontaine ML; Bredesen R
    Faraday Discuss; 2016 Oct; 192():251-269. PubMed ID: 27478073
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The cost of carbon capture and storage for natural gas combined cycle power plants.
    Rubin ES; Zhai H
    Environ Sci Technol; 2012 Mar; 46(6):3076-84. PubMed ID: 22332665
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Time-Resolved Cost Analysis of Natural Gas Power Plant Conversion to Bioenergy with Carbon Capture and Storage to Support Net-Zero Emissions.
    Sproul E; Barlow J; Quinn JC
    Environ Sci Technol; 2020 Dec; 54(23):15338-15346. PubMed ID: 33183006
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Systems Analysis of Physical Absorption of CO
    Zhai H; Rubin ES
    Environ Sci Technol; 2018 Apr; 52(8):4996-5004. PubMed ID: 29589925
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Advanced Membranes and Learning Scale Required for Cost-Effective Post-combustion Carbon Capture.
    Zhai H
    iScience; 2019 Mar; 13():440-451. PubMed ID: 30904773
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Amine reclaiming technologies in post-combustion carbon dioxide capture.
    Wang T; Hovland J; Jens KJ
    J Environ Sci (China); 2015 Jan; 27():276-89. PubMed ID: 25597687
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Decarbonization of Power and Industrial Sectors: The Role of Membrane Processes.
    Kamolov A; Turakulov Z; Rejabov S; Díaz-Sainz G; Gómez-Coma L; Norkobilov A; Fallanza M; Irabien A
    Membranes (Basel); 2023 Jan; 13(2):. PubMed ID: 36837633
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Implications of the recent reductions in natural gas prices for emissions of CO2 from the US power sector.
    Lu X; Salovaara J; McElroy MB
    Environ Sci Technol; 2012 Mar; 46(5):3014-21. PubMed ID: 22321206
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Room-temperature ionic liquids and composite materials: platform technologies for CO(2) capture.
    Bara JE; Camper DE; Gin DL; Noble RD
    Acc Chem Res; 2010 Jan; 43(1):152-9. PubMed ID: 19795831
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mitigation of global greenhouse gas emissions from waste: conclusions and strategies from the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report. Working Group III (Mitigation).
    Bogner J; Pipatti R; Hashimoto S; Diaz C; Mareckova K; Diaz L; Kjeldsen P; Monni S; Faaij A; Gao Q; Zhang T; Ahmed MA; Sutamihardja RT; Gregory R;
    Waste Manag Res; 2008 Feb; 26(1):11-32. PubMed ID: 18338699
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the potential for BECCS efficiency improvement through heat recovery from both post-combustion and oxy-combustion facilities.
    Dowell NM; Fajardy M
    Faraday Discuss; 2016 Oct; 192():241-250. PubMed ID: 27489043
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Environmental impact efficiency of natural gas combined cycle power plants: A combined life cycle assessment and dynamic data envelopment analysis approach.
    Martín-Gamboa M; Iribarren D; Dufour J
    Sci Total Environ; 2018 Feb; 615():29-37. PubMed ID: 28963894
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cutting the cost of carbon capture: a case for carbon capture and utilization.
    Joos L; Huck JM; Van Speybroeck V; Smit B
    Faraday Discuss; 2016 Oct; 192():391-414. PubMed ID: 27486680
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Current status and future development of solvent-based carbon capture.
    Oko E; Wang M; Joel AS
    Int J Coal Sci Technol; 2017; 4(1):5-14. PubMed ID: 32226642
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.