BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 27476664)

  • 1. High pressure effects in high-field asymmetric waveform ion mobility spectrometry.
    Wang Y; Wang X; Li L; Chen C; Xu T; Wang T; Luo J
    Rapid Commun Mass Spectrom; 2016 Aug; 30(16):1914-22. PubMed ID: 27476664
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Compensation voltage (CV) peak shapes using a domed FAIMS with the inner electrode translated to various longitudinal positions.
    Guevremont R; Thekkadath G; Hilton CK
    J Am Soc Mass Spectrom; 2005 Jun; 16(6):948-56. PubMed ID: 15907709
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pressure effects in differential mobility spectrometry.
    Nazarov EG; Coy SL; Krylov EV; Miller RA; Eiceman GA
    Anal Chem; 2006 Nov; 78(22):7697-706. PubMed ID: 17105161
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Elimination of the helium requirement in high-field asymmetric waveform ion mobility spectrometry (FAIMS): beneficial effects of decreasing the analyzer gap width on peptide analysis.
    Barnett DA; Ouellette RJ
    Rapid Commun Mass Spectrom; 2011 Jul; 25(14):1959-71. PubMed ID: 21698679
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of experimental and calculated peak shapes for three cylindrical geometry FAIMS prototypes of differing electrode diameters.
    Guevremont R; Purves R
    J Am Soc Mass Spectrom; 2005 Mar; 16(3):349-62. PubMed ID: 15734328
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of rectangular and bisinusoidal waveforms in a miniature planar high-field asymmetric waveform ion mobility spectrometer.
    Prieto M; Tsai CW; Boumsellek S; Ferran R; Kaminsky I; Harris S; Yost RA
    Anal Chem; 2011 Dec; 83(24):9237-43. PubMed ID: 22017325
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Performance enhancement of high-field asymmetric waveform ion mobility spectrometry by applying differential-RF-driven operation mode.
    Zeng Y; Tang F; Zhai Y; Wang X
    Rev Sci Instrum; 2017 Sep; 88(9):095113. PubMed ID: 28964226
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comprehensive theoretical analysis and experimental exploration of ultrafast microchip-based high-field asymmetric ion mobility spectrometry (FAIMS) technique.
    Li L; Wang Y; Chen C; Wang X; Luo J
    J Mass Spectrom; 2015 Jun; 50(6):792-801. PubMed ID: 26169133
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ion Mobility Spectrometry of Superheated Macromolecules at Electric Fields up to 500 Td.
    Andrzejewski R; Entwistle A; Giles R; Shvartsburg AA
    Anal Chem; 2021 Sep; 93(35):12049-12058. PubMed ID: 34423987
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrospray ionization high-field asymmetric waveform ion mobility spectrometry-mass spectrometry.
    Purves RW; Guevremont R
    Anal Chem; 1999 Jul; 71(13):2346-57. PubMed ID: 21662783
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-resolution field asymmetric waveform ion mobility spectrometry using new planar geometry analyzers.
    Shvartsburg AA; Li F; Tang K; Smith RD
    Anal Chem; 2006 Jun; 78(11):3706-14. PubMed ID: 16737227
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Review of applications of high-field asymmetric waveform ion mobility spectrometry (FAIMS) and differential mobility spectrometry (DMS).
    Kolakowski BM; Mester Z
    Analyst; 2007 Sep; 132(9):842-64. PubMed ID: 17710259
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integration of paper spray ionization high-field asymmetric waveform ion mobility spectrometry for forensic applications.
    Tsai CW; Tipple CA; Yost RA
    Rapid Commun Mass Spectrom; 2018 Apr; 32(7):552-560. PubMed ID: 29380926
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Precise determination of nonlinear function of ion mobility for explosives and drugs at high electric fields for microchip FAIMS.
    Guo D; Wang Y; Li L; Wang X; Luo J
    J Mass Spectrom; 2015 Jan; 50(1):198-205. PubMed ID: 25601693
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Increasing Peak Capacity in Nontargeted Omics Applications by Combining Full Scan Field Asymmetric Waveform Ion Mobility Spectrometry with Liquid Chromatography-Mass Spectrometry.
    Arthur KL; Turner MA; Reynolds JC; Creaser CS
    Anal Chem; 2017 Mar; 89(6):3452-3459. PubMed ID: 28230966
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Behaviour of tetraalkylammonium ions in high-field asymmetric waveform ion mobility spectrometry.
    Aksenov AA; Kapron JT
    Rapid Commun Mass Spectrom; 2010 May; 24(10):1392-6. PubMed ID: 20411577
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fast Orthogonal Separation by Superposition of Time of Flight and Field Asymmetric Ion Mobility Spectrometry.
    Bohnhorst A; Kirk AT; Berger M; Zimmermann S
    Anal Chem; 2018 Jan; 90(2):1114-1121. PubMed ID: 29271643
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Field asymmetric waveform ion mobility spectrometry studies of proteins: Dipole alignment in ion mobility spectrometry?
    Shvartsburg AA; Bryskiewicz T; Purves RW; Tang K; Guevremont R; Smith RD
    J Phys Chem B; 2006 Nov; 110(43):21966-80. PubMed ID: 17064166
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancement of mass spectrometry performance for proteomic analyses using high-field asymmetric waveform ion mobility spectrometry (FAIMS).
    Bonneil E; Pfammatter S; Thibault P
    J Mass Spectrom; 2015 Nov; 50(11):1181-95. PubMed ID: 26505763
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Feasibility of higher-order differential ion mobility separations using new asymmetric waveforms.
    Shvartsburg AA; Mashkevich SV; Smith RD
    J Phys Chem A; 2006 Mar; 110(8):2663-73. PubMed ID: 16494377
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.