These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
156 related articles for article (PubMed ID: 27476727)
1. Rhamnolipid-enhanced aerobic biodegradation of triclosan (TCS) by indigenous microorganisms in water-sediment systems. Guo Q; Yan J; Wen J; Hu Y; Chen Y; Wu W Sci Total Environ; 2016 Nov; 571():1304-11. PubMed ID: 27476727 [TBL] [Abstract][Full Text] [Related]
2. Effects of monorhamnolipid and dirhamnolipid on sorption and desorption of triclosan in sediment-water system. Zhang X; Guo Q; Hu Y; Lin H Chemosphere; 2013 Jan; 90(2):581-7. PubMed ID: 23044351 [TBL] [Abstract][Full Text] [Related]
3. Sorption/desorption behavior of triclosan in sediment-water-rhamnolipid systems: Effects of pH, ionic strength, and DOM. Wu W; Hu Y; Guo Q; Yan J; Chen Y; Cheng J J Hazard Mater; 2015 Oct; 297():59-65. PubMed ID: 25938643 [TBL] [Abstract][Full Text] [Related]
4. Bacterial community variation and microbial mechanism of triclosan (TCS) removal by constructed wetlands with different types of plants. Zhao C; Xie H; Xu J; Xu X; Zhang J; Hu Z; Liu C; Liang S; Wang Q; Wang J Sci Total Environ; 2015 Feb; 505():633-9. PubMed ID: 25461066 [TBL] [Abstract][Full Text] [Related]
5. Experiments and numerical simulation on the degradation processes of carbamazepine and triclosan in surface water: A case study for the Shahe Stream, South China. Yuan X; Li S; Hu J; Yu M; Li Y; Wang Z Sci Total Environ; 2019 Mar; 655():1125-1138. PubMed ID: 30577106 [TBL] [Abstract][Full Text] [Related]
6. Anoxic biodegradation of triclosan and the removal of its antimicrobial effect in microbial fuel cells. Wang L; Liu Y; Wang C; Zhao X; Mahadeva GD; Wu Y; Ma J; Zhao F J Hazard Mater; 2018 Feb; 344():669-678. PubMed ID: 29154092 [TBL] [Abstract][Full Text] [Related]
7. Influence of biosurfactant on the diesel oil remediation in soil-water system. Li YY; Zheng XL; Li B J Environ Sci (China); 2006; 18(3):587-90. PubMed ID: 17294662 [TBL] [Abstract][Full Text] [Related]
8. Application of biosurfactants, rhamnolipid, and surfactin, for enhanced biodegradation of diesel-contaminated water and soil. Whang LM; Liu PW; Ma CC; Cheng SS J Hazard Mater; 2008 Feb; 151(1):155-63. PubMed ID: 17614195 [TBL] [Abstract][Full Text] [Related]
9. Biodegradation of triclosan in diatom Navicula sp.: Kinetics, transformation products, toxicity evaluation and the effects of pH and potassium permanganate. Ding T; Lin K; Yang M; Bao L; Li J; Yang B; Gan J J Hazard Mater; 2018 Feb; 344():200-209. PubMed ID: 29035714 [TBL] [Abstract][Full Text] [Related]
10. Removal of trimethoprim, sulfamethoxazole, and triclosan by the green alga Nannochloris sp. Bai X; Acharya K J Hazard Mater; 2016 Sep; 315():70-5. PubMed ID: 27179202 [TBL] [Abstract][Full Text] [Related]
11. Evaluation of rhamnolipid addition on the natural attenuation of estuarine sediments contaminated with diesel oil. Nakazawa MM; Gavazza S; Kato MT; Florencio L Environ Sci Pollut Res Int; 2017 Nov; 24(33):25522-25533. PubMed ID: 27388594 [TBL] [Abstract][Full Text] [Related]
12. Factors regulating the accumulation and spatial distribution of the emerging contaminant triclosan in the sediments of an urbanized estuary: Greenwich Bay, Rhode Island, USA. Katz DR; Cantwell MG; Sullivan JC; Perron MM; Burgess RM; Ho KT; Charpentier MA Sci Total Environ; 2013 Jan; 443():123-33. PubMed ID: 23183224 [TBL] [Abstract][Full Text] [Related]
13. Effect of cations on the solubilization/deposition of triclosan in sediment-water-rhamnolipid system. Chen Y; Hu Y; Guo Q; Yan J; Wu W Chemosphere; 2016 Sep; 159():465-472. PubMed ID: 27341150 [TBL] [Abstract][Full Text] [Related]
14. Fate and effects of triclosan in activated sludge. Federle TW; Kaiser SK; Nuck BA Environ Toxicol Chem; 2002 Jul; 21(7):1330-7. PubMed ID: 12109731 [TBL] [Abstract][Full Text] [Related]
15. Fate and effects of sediment-associated triclosan in subtropical freshwater microcosms. Peng FJ; Diepens NJ; Pan CG; Bracewell SA; Ying GG; Salvito D; Selck H; Van den Brink PJ Aquat Toxicol; 2018 Sep; 202():117-125. PubMed ID: 30025380 [TBL] [Abstract][Full Text] [Related]
16. Evaluation of triclosan and triclocarban at river basin scale using monitoring and modeling tools: implications for controlling of urban domestic sewage discharge. Zhao JL; Zhang QQ; Chen F; Wang L; Ying GG; Liu YS; Yang B; Zhou LJ; Liu S; Su HC; Zhang RQ Water Res; 2013 Jan; 47(1):395-405. PubMed ID: 23127624 [TBL] [Abstract][Full Text] [Related]
17. Application of rhamnolipid and surfactin for enhanced diesel biodegradation--effects of pH and ammonium addition. Whang LM; Liu PW; Ma CC; Cheng SS J Hazard Mater; 2009 May; 164(2-3):1045-50. PubMed ID: 18950937 [TBL] [Abstract][Full Text] [Related]
18. Triclosan: its occurrence, fate and effects in the Australian environment. Kookana RS; Ying GG; Waller NJ Water Sci Technol; 2011; 63(4):598-604. PubMed ID: 21330702 [TBL] [Abstract][Full Text] [Related]
19. Sorption of triclosan onto sediments and its distribution behavior in sediment-water-rhamnolipid systems. Lin H; Hu YY; Zhang XY; Guo YP; Chen GR Environ Toxicol Chem; 2011 Nov; 30(11):2416-22. PubMed ID: 21823162 [TBL] [Abstract][Full Text] [Related]
20. Sorption and degradation of triclosan in sediments and its effect on microbes. Huang X; Wu C; Hu H; Yu Y; Liu J Ecotoxicol Environ Saf; 2015 Jun; 116():76-83. PubMed ID: 25770654 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]