These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

285 related articles for article (PubMed ID: 27476755)

  • 1. Amorphous Silk Nanofiber Solutions for Fabricating Silk-Based Functional Materials.
    Dong X; Zhao Q; Xiao L; Lu Q; Kaplan DL
    Biomacromolecules; 2016 Sep; 17(9):3000-6. PubMed ID: 27476755
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reversible hydrogel-solution system of silk with high beta-sheet content.
    Bai S; Zhang X; Lu Q; Sheng W; Liu L; Dong B; Kaplan DL; Zhu H
    Biomacromolecules; 2014 Aug; 15(8):3044-51. PubMed ID: 25056606
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Amorphous Silk Fibroin Nanofiber Hydrogels with Enhanced Mechanical Properties.
    Liu J; Ding Z; Lu G; Wang J; Wang L; Lu Q
    Macromol Biosci; 2019 Dec; 19(12):e1900326. PubMed ID: 31738015
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel two-step method to form silk fibroin fibrous hydrogel.
    Ming J; Li M; Han Y; Chen Y; Li H; Zuo B; Pan F
    Mater Sci Eng C Mater Biol Appl; 2016 Feb; 59():185-192. PubMed ID: 26652363
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crystal networks in silk fibrous materials: from hierarchical structure to ultra performance.
    Nguyen AT; Huang QL; Yang Z; Lin N; Xu G; Liu XY
    Small; 2015 Mar; 11(9-10):1039-54. PubMed ID: 25510895
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrospun poly (ɛ-caprolactone)/silk fibroin core-sheath nanofibers and their potential applications in tissue engineering and drug release.
    Li L; Li H; Qian Y; Li X; Singh GK; Zhong L; Liu W; Lv Y; Cai K; Yang L
    Int J Biol Macromol; 2011 Aug; 49(2):223-32. PubMed ID: 21565216
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineered Tough Silk Hydrogels through Assembling β-Sheet Rich Nanofibers Based on a Solvent Replacement Strategy.
    Zhang X; Xiao L; Ding Z; Lu Q; Kaplan DL
    ACS Nano; 2022 Jul; 16(7):10209-10218. PubMed ID: 35587205
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanisms and control of silk-based electrospinning.
    Zhang F; Zuo B; Fan Z; Xie Z; Lu Q; Zhang X; Kaplan DL
    Biomacromolecules; 2012 Mar; 13(3):798-804. PubMed ID: 22300335
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Silk protein-based hydrogels: Promising advanced materials for biomedical applications.
    Kapoor S; Kundu SC
    Acta Biomater; 2016 Feb; 31():17-32. PubMed ID: 26602821
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering aqueous fiber assembly into silk-elastin-like protein polymers.
    Zeng L; Jiang L; Teng W; Cappello J; Zohar Y; Wu X
    Macromol Rapid Commun; 2014 Jul; 35(14):1273-9. PubMed ID: 24798978
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tough Anisotropic Silk Nanofiber Hydrogels with Osteoinductive Capacity.
    Ding Z; Lu G; Cheng W; Xu G; Zuo B; Lu Q; Kaplan DL
    ACS Biomater Sci Eng; 2020 Apr; 6(4):2357-2367. PubMed ID: 33455344
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tuning the microstructure and mechanical properties of lyophilized silk scaffolds by pre-freezing treatment of silk hydrogel and silk solution.
    Bayattork M; Rajkhowa R; Allardyce BJ; Wang X; Li J
    J Colloid Interface Sci; 2023 Feb; 631(Pt A):46-55. PubMed ID: 36368215
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanocomposite of silk fibroin nanofiber and montmorillonite: fabrication and morphology.
    Kishimoto Y; Ito F; Usami H; Togawa E; Tsukada M; Morikawa H; Yamanaka S
    Int J Biol Macromol; 2013 Jun; 57():124-8. PubMed ID: 23500446
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Scalable fabrication of sulfated silk fibroin nanofibrous membranes for efficient lipase adsorption and recovery.
    Yi S; Dai F; Wu Y; Zhao C; Si Y; Sun G
    Int J Biol Macromol; 2018 May; 111():738-745. PubMed ID: 29339287
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Silk porous scaffolds with nanofibrous microstructures and tunable properties.
    Lu G; Liu S; Lin S; Kaplan DL; Lu Q
    Colloids Surf B Biointerfaces; 2014 Aug; 120():28-37. PubMed ID: 24892562
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of molecular weight on electro-spinning performance of regenerated silk.
    Park BK; Um IC
    Int J Biol Macromol; 2018 Jan; 106():1166-1172. PubMed ID: 28847607
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural characteristics and biological performance of silk fibroin nanofiber containing microalgae Spirulina extract.
    Cha BG; Kwak HW; Park AR; Kim SH; Park SY; Kim HJ; Kim IS; Lee KH; Park YH
    Biopolymers; 2014 Apr; 101(4):307-18. PubMed ID: 23868372
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication of nano-hydroxyapatite on electrospun silk fibroin nanofiber and their effects in osteoblastic behavior.
    Wei K; Li Y; Kim KO; Nakagawa Y; Kim BS; Abe K; Chen GQ; Kim IS
    J Biomed Mater Res A; 2011 Jun; 97(3):272-80. PubMed ID: 21442728
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Swelling behavior and morphological evolution of mixed gelatin/silk fibroin hydrogels.
    Gil ES; Frankowski DJ; Spontak RJ; Hudson SM
    Biomacromolecules; 2005; 6(6):3079-87. PubMed ID: 16283730
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Degradation mechanism and control of blended eri and tasar silk nanofiber.
    Panda N; Biswas A; Sukla LB; Pramanik K
    Appl Biochem Biotechnol; 2014 Dec; 174(7):2403-12. PubMed ID: 25227684
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.