These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

279 related articles for article (PubMed ID: 27476757)

  • 21. Cytosolic acetyl-CoA promotes histone acetylation predominantly at H3K27 in Arabidopsis.
    Chen C; Li C; Wang Y; Renaud J; Tian G; Kambhampati S; Saatian B; Nguyen V; Hannoufa A; Marsolais F; Yuan ZC; Yu K; Austin RS; Liu J; Kohalmi SE; Wu K; Huang S; Cui Y
    Nat Plants; 2017 Oct; 3(10):814-824. PubMed ID: 28947800
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Acetyl-CoA and the regulation of metabolism: mechanisms and consequences.
    Shi L; Tu BP
    Curr Opin Cell Biol; 2015 Apr; 33():125-31. PubMed ID: 25703630
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Protein Lysine Acetylation: Grease or Sand in the Gears of β-Cell Mitochondria?
    Santo-Domingo J; Dayon L; Wiederkehr A
    J Mol Biol; 2020 Mar; 432(5):1446-1460. PubMed ID: 31628953
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Substrate and functional diversity of lysine acetylation revealed by a proteomics survey.
    Kim SC; Sprung R; Chen Y; Xu Y; Ball H; Pei J; Cheng T; Kho Y; Xiao H; Xiao L; Grishin NV; White M; Yang XJ; Zhao Y
    Mol Cell; 2006 Aug; 23(4):607-18. PubMed ID: 16916647
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mass spectrometric identification of K210 essential for rat malonyl-CoA decarboxylase catalysis.
    Nam HW; Lee GY; Kim YS
    J Proteome Res; 2006 Jun; 5(6):1398-406. PubMed ID: 16739991
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Regulation of autophagy and mitophagy by nutrient availability and acetylation.
    Webster BR; Scott I; Traba J; Han K; Sack MN
    Biochim Biophys Acta; 2014 Apr; 1841(4):525-34. PubMed ID: 24525425
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Measuring acetyl-CoA and acetylated histone turnover in vivo: Effect of a high fat diet.
    Arias-Alvarado A; Aghayev M; Ilchenko S; Rachdaoui N; Lepp J; Tsai TH; Zhang GF; Previs S; Kasumov T
    Anal Biochem; 2021 Feb; 615():114067. PubMed ID: 33340539
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Acetylation of conserved lysines fine-tunes mitochondrial malate dehydrogenase activity in land plants.
    Balparda M; Elsässer M; Badia MB; Giese J; Bovdilova A; Hüdig M; Reinmuth L; Eirich J; Schwarzländer M; Finkemeier I; Schallenberg-Rüdinger M; Maurino VG
    Plant J; 2022 Jan; 109(1):92-111. PubMed ID: 34713507
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Lysine acetylation and cancer: A proteomics perspective.
    Gil J; Ramírez-Torres A; Encarnación-Guevara S
    J Proteomics; 2017 Jan; 150():297-309. PubMed ID: 27746255
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Regulation of Translation by Lysine Acetylation in Escherichia coli.
    Feid SC; Walukiewicz HE; Wang X; Nakayasu ES; Rao CV; Wolfe AJ
    mBio; 2022 Jun; 13(3):e0122422. PubMed ID: 35604121
    [No Abstract]   [Full Text] [Related]  

  • 31. Global Proteome Analyses of Lysine Acetylation and Succinylation Reveal the Widespread Involvement of both Modification in Metabolism in the Embryo of Germinating Rice Seed.
    He D; Wang Q; Li M; Damaris RN; Yi X; Cheng Z; Yang P
    J Proteome Res; 2016 Mar; 15(3):879-90. PubMed ID: 26767346
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Recent Contributions of Proteomics to Our Understanding of Reversible N
    Popova L; Carr RA; Carabetta VJ
    J Proteome Res; 2024 Aug; 23(8):2733-2749. PubMed ID: 38442041
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Post-translational modifications in mitochondria: protein signaling in the powerhouse.
    Stram AR; Payne RM
    Cell Mol Life Sci; 2016 Nov; 73(21):4063-73. PubMed ID: 27233499
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Lysine acetylation is a common post-translational modification of key metabolic pathway enzymes of the anaerobe Porphyromonas gingivalis.
    Butler CA; Veith PD; Nieto MF; Dashper SG; Reynolds EC
    J Proteomics; 2015 Oct; 128():352-64. PubMed ID: 26341301
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mitochondrial protein acetylation as a cell-intrinsic, evolutionary driver of fat storage: chemical and metabolic logic of acetyl-lysine modifications.
    Ghanta S; Grossmann RE; Brenner C
    Crit Rev Biochem Mol Biol; 2013; 48(6):561-74. PubMed ID: 24050258
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dynamics of Mitochondrial Proteome and Acetylome in Glioblastoma Cells with Contrasting Metabolic Phenotypes.
    Fernández-Coto DL; Gil J; Ayala G; Encarnación-Guevara S
    Int J Mol Sci; 2024 Mar; 25(6):. PubMed ID: 38542426
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Quantification of mitochondrial acetylation dynamics highlights prominent sites of metabolic regulation.
    Still AJ; Floyd BJ; Hebert AS; Bingman CA; Carson JJ; Gunderson DR; Dolan BK; Grimsrud PA; Dittenhafer-Reed KE; Stapleton DS; Keller MP; Westphall MS; Denu JM; Attie AD; Coon JJ; Pagliarini DJ
    J Biol Chem; 2013 Sep; 288(36):26209-26219. PubMed ID: 23864654
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Protein lysine acetylation in bacteria: Current state of the art.
    Ouidir T; Kentache T; Hardouin J
    Proteomics; 2016 Jan; 16(2):301-9. PubMed ID: 26390373
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Bacterial protein acetylation: mechanisms, functions, and methods for study.
    Rizo J; Encarnación-Guevara S
    Front Cell Infect Microbiol; 2024; 14():1408947. PubMed ID: 39027134
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The emerging roles of GCN5L1 in mitochondrial and vacuolar organelle biology.
    Wu K; Scott I; Wang L; Thapa D; Sack MN
    Biochim Biophys Acta Gene Regul Mech; 2021 Feb; 1864(2):194598. PubMed ID: 32599084
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.