These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 27476923)

  • 1. Impact of Magnetic Field on Pressures of Programmable Cerebrospinal Fluid Shunts: An Experimental Study.
    Altun I; Yuksel KZ; Mert T
    Turk Neurosurg; 2017; 27(6):935-941. PubMed ID: 27476923
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Programmable shunts and headphones: Are they safe together?
    Spader HS; Ratanaprasatporn L; Morrison JF; Grossberg JA; Cosgrove GR
    J Neurosurg Pediatr; 2015 Oct; 16(4):402-5. PubMed ID: 26149436
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Effect of magnetic fields from home-use magnetic induction therapy apparatuses on adjustable cerebrospinal fluid shunt valves].
    Nakashima K; Oishi A; Itokawa H; Fujimoto M
    No Shinkei Geka; 2010 Aug; 38(8):725-9. PubMed ID: 20697146
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Programmable shunt valves: in vitro assessment of safety of the magnetic field generated by a portable game machine.
    Nakashima K; Nakajo T; Kawamo M; Kato A; Ishigaki S; Murakami H; Imaizumi Y; Izumiyama H
    Neurol Med Chir (Tokyo); 2011; 51(9):635-8. PubMed ID: 21946726
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of Strata NSC and Codman Hakim adjustable cerebrospinal fluid shunts and their corresponding antisiphon devices.
    Arnell K; Koskinen LO; Malm J; Eklund A
    J Neurosurg Pediatr; 2009 Mar; 3(3):166-72. PubMed ID: 19338461
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of 3-tesla magnetic resonance imaging on various pressure programmable shunt valves.
    Inoue T; Kuzu Y; Ogasawara K; Ogawa A
    J Neurosurg; 2005 Aug; 103(2 Suppl):163-5. PubMed ID: 16370283
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of transcranial magnetic stimulation on four types of pressure-programmable valves.
    Lefranc M; Ko JY; Peltier J; Fichten A; Desenclos C; Macron JM; Toussaint P; Le Gars D; Petitjean M
    Acta Neurochir (Wien); 2010 Apr; 152(4):689-97. PubMed ID: 19957091
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcutaneous pressure-adjustable valves and magnetic resonance imaging: an ex vivo examination of the Codman-Medos programmable valve and the Sophy adjustable pressure valve.
    Ortler M; Kostron H; Felber S
    Neurosurgery; 1997 May; 40(5):1050-7; discussion 1057-8. PubMed ID: 9149264
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Laboratory testing of hydrocephalus shunts -- conclusion of the U.K. Shunt evaluation programme.
    Czosnyka Z; Czosnyka M; Richards HK; Pickard JD
    Acta Neurochir (Wien); 2002 Jun; 144(6):525-38; discussion 538. PubMed ID: 12111485
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Magnetically programmable shunt valve: MRI at 3-Tesla.
    Shellock FG; Wilson SF; Mauge CP
    Magn Reson Imaging; 2007 Sep; 25(7):1116-21. PubMed ID: 17707175
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Smartphones and Programmable Shunts: Are These Indispensable Phones Safe and Smart?
    Ozturk S; Cakin H; Kurtuldu H; Kocak O; Erol FS; Kaplan M
    World Neurosurg; 2017 Jun; 102():518-525. PubMed ID: 28342922
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro performance of the fixed and adjustable gravity-assisted unit with and without motion-evidence of motion-induced flow.
    Kimura T; Schulz M; Shimoji K; Miyajima M; Arai H; Thomale UW
    Acta Neurochir (Wien); 2016 Oct; 158(10):2011-8. PubMed ID: 27553048
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of exposure from iPhone 12 on programmable ventriculoperitoneal shunts.
    Kumar A; Pervaiz A; Borg A; Abdul-Hamid A; Jeyaretna S; MacKeith S; Qureishi A
    Br J Neurosurg; 2022 Jun; 36(3):415-419. PubMed ID: 35062838
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Seven years of clinical experience with the programmable Codman Hakim valve: a retrospective study of 583 patients.
    Zemack G; Romner B
    J Neurosurg; 2000 Jun; 92(6):941-8. PubMed ID: 10839253
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Magnetic field interactions in adjustable hydrocephalus shunts.
    Lavinio A; Harding S; Van Der Boogaard F; Czosnyka M; Smielewski P; Richards HK; Pickard JD; Czosnyka ZH
    J Neurosurg Pediatr; 2008 Sep; 2(3):222-8. PubMed ID: 18759607
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of anti-siphon devices-how do they affect CSF dynamics in supine and upright posture?
    Gehlen M; Eklund A; Kurtcuoglu V; Malm J; Schmid Daners M
    Acta Neurochir (Wien); 2017 Aug; 159(8):1389-1397. PubMed ID: 28660395
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The programmable adult Codman Hakim valve is useful even in very small children with hydrocephalus. A 7-year retrospective study with special focus on cost/benefit analysis.
    Arnell K; Eriksson E; Olsen L
    Eur J Pediatr Surg; 2006 Feb; 16(1):1-7. PubMed ID: 16544218
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [The Codman Medos programmable shunt valve. Evaluation of 53 implantations in 50 patients].
    Belliard H; Roux FX; Turak B; Nataf F; Devaux B; Cioloca C
    Neurochirurgie; 1996; 42(3):139-45; discussion 145-6. PubMed ID: 9084740
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Programming jammed Codman Hakim programmable valves: study of an explanted valve and successful programming in a patient.
    Wong ST; Wen E; Fong D
    J Neurosurg Pediatr; 2013 Aug; 12(2):160-5. PubMed ID: 23705870
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Programmable CSF shunt valve: in vitro assessment of MR imaging safety at 3T.
    Shellock FG; Habibi R; Knebel J
    AJNR Am J Neuroradiol; 2006 Mar; 27(3):661-5. PubMed ID: 16552013
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.