BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

937 related articles for article (PubMed ID: 27476966)

  • 1. Midbrain-like Organoids from Human Pluripotent Stem Cells Contain Functional Dopaminergic and Neuromelanin-Producing Neurons.
    Jo J; Xiao Y; Sun AX; Cukuroglu E; Tran HD; Göke J; Tan ZY; Saw TY; Tan CP; Lokman H; Lee Y; Kim D; Ko HS; Kim SO; Park JH; Cho NJ; Hyde TM; Kleinman JE; Shin JH; Weinberger DR; Tan EK; Je HS; Ng HH
    Cell Stem Cell; 2016 Aug; 19(2):248-257. PubMed ID: 27476966
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-throughput generation of midbrain dopaminergic neuron organoids from reporter human pluripotent stem cells.
    Sarrafha L; Parfitt GM; Reyes R; Goldman C; Coccia E; Kareva T; Ahfeldt T
    STAR Protoc; 2021 Jun; 2(2):100463. PubMed ID: 33997803
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carbon Fibers as a New Type of Scaffold for Midbrain Organoid Development.
    Tejchman A; Znój A; Chlebanowska P; Frączek-Szczypta A; Majka M
    Int J Mol Sci; 2020 Aug; 21(17):. PubMed ID: 32825046
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neural Differentiation in the Third Dimension: Generating a Human Midbrain.
    Marton RM; Paşca SP
    Cell Stem Cell; 2016 Aug; 19(2):145-146. PubMed ID: 27494668
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Derivation of Human Midbrain-Specific Organoids from Neuroepithelial Stem Cells.
    Monzel AS; Smits LM; Hemmer K; Hachi S; Moreno EL; van Wuellen T; Jarazo J; Walter J; Brüggemann I; Boussaad I; Berger E; Fleming RMT; Bolognin S; Schwamborn JC
    Stem Cell Reports; 2017 May; 8(5):1144-1154. PubMed ID: 28416282
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Generation of Human Ventral Midbrain Organoids Derived from Pluripotent Stem Cells.
    Sozzi E; Nilsson F; Kajtez J; Parmar M; Fiorenzano A
    Curr Protoc; 2022 Sep; 2(9):e555. PubMed ID: 36121202
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A fully automated high-throughput workflow for 3D-based chemical screening in human midbrain organoids.
    Renner H; Grabos M; Becker KJ; Kagermeier TE; Wu J; Otto M; Peischard S; Zeuschner D; TsyTsyura Y; Disse P; Klingauf J; Leidel SA; Seebohm G; Schöler HR; Bruder JM
    Elife; 2020 Nov; 9():. PubMed ID: 33138918
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Use of 3D Organoids as a Model to Study Idiopathic Form of Parkinson's Disease.
    Chlebanowska P; Tejchman A; Sułkowski M; Skrzypek K; Majka M
    Int J Mol Sci; 2020 Jan; 21(3):. PubMed ID: 31973095
    [TBL] [Abstract][Full Text] [Related]  

  • 9. From 2D to 3D: Development of Monolayer Dopaminergic Neuronal and Midbrain Organoid Cultures for Parkinson's Disease Modeling and Regenerative Therapy.
    Yeap YJ; Teddy TJW; Lee MJ; Goh M; Lim KL
    Int J Mol Sci; 2023 Jan; 24(3):. PubMed ID: 36768843
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering of midbrain organoids containing long-lived dopaminergic neurons.
    Tieng V; Stoppini L; Villy S; Fathi M; Dubois-Dauphin M; Krause KH
    Stem Cells Dev; 2014 Jul; 23(13):1535-47. PubMed ID: 24576173
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neural stem cells derived from human midbrain organoids as a stable source for treating Parkinson's disease: Midbrain organoid-NSCs (Og-NSC) as a stable source for PD treatment.
    Kim SW; Woo HJ; Kim EH; Kim HS; Suh HN; Kim SH; Song JJ; Wulansari N; Kang M; Choi SY; Choi SJ; Jang WH; Lee J; Kim KH; Lee W; Kim SH; Yang J; Kyung J; Lee HS; Park SM; Chang MY; Lee SH
    Prog Neurobiol; 2021 Sep; 204():102086. PubMed ID: 34052305
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pluripotent stem cell-derived kidney organoids: An in vivo-like in vitro technology.
    Schutgens F; Verhaar MC; Rookmaaker MB
    Eur J Pharmacol; 2016 Nov; 790():12-20. PubMed ID: 27375081
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Millifluidic culture improves human midbrain organoid vitality and differentiation.
    Berger E; Magliaro C; Paczia N; Monzel AS; Antony P; Linster CL; Bolognin S; Ahluwalia A; Schwamborn JC
    Lab Chip; 2018 Oct; 18(20):3172-3183. PubMed ID: 30204191
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Seq-ing Markers of Midbrain Dopamine Neurons.
    Osborn T; Hallett PJ
    Cell Stem Cell; 2017 Jan; 20(1):11-12. PubMed ID: 28061349
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Strategies for bringing stem cell-derived dopamine neurons to the clinic-The NYSTEM trial.
    Studer L
    Prog Brain Res; 2017; 230():191-212. PubMed ID: 28552229
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Origin of the Induced Pluripotent Stem Cells Affects Their Differentiation into Dopaminergic Neurons.
    Chlebanowska P; Sułkowski M; Skrzypek K; Tejchman A; Muszyńska A; Noroozi R; Majka M
    Int J Mol Sci; 2020 Aug; 21(16):. PubMed ID: 32784894
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro generation of human pluripotent stem cell derived lung organoids.
    Dye BR; Hill DR; Ferguson MA; Tsai YH; Nagy MS; Dyal R; Wells JM; Mayhew CN; Nattiv R; Klein OD; White ES; Deutsch GH; Spence JR
    Elife; 2015 Mar; 4():. PubMed ID: 25803487
    [TBL] [Abstract][Full Text] [Related]  

  • 18. hPSC-derived Midbrain Dopaminergic Neurons Generated in a Scalable 3-D Biomaterial.
    Adil MM; Schaffer DV
    Curr Protoc Stem Cell Biol; 2018 Feb; 44():2D.21.1-2D.21.17. PubMed ID: 29512105
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transcriptional comparison of human induced and primary midbrain dopaminergic neurons.
    Xia N; Zhang P; Fang F; Wang Z; Rothstein M; Angulo B; Chiang R; Taylor J; Reijo Pera RA
    Sci Rep; 2016 Feb; 6():20270. PubMed ID: 26842779
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new technique for modeling neuronal connectivity using human pluripotent stem cells.
    Lee CT; Bendriem RM; Freed WJ
    Restor Neurol Neurosci; 2015; 33(3):347-56. PubMed ID: 25835555
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 47.