These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 27477078)

  • 1. Dual-modulation, dual-wavelength, optical polarimetry system for glucose monitoring.
    Yu ZF; Pirnstill CW; Coté GL
    J Biomed Opt; 2016 Aug; 21(8):87001. PubMed ID: 27477078
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dual-wavelength polarimetric glucose sensing in the presence of birefringence and motion artifact using anterior chamber of the eye phantoms.
    Malik BH; Pirnstill CW; Coté GL
    J Biomed Opt; 2013 Jan; 18(1):17007. PubMed ID: 23299516
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling the corneal birefringence of the eye toward the development of a polarimetric glucose sensor.
    Malik BH; Coté GL
    J Biomed Opt; 2010; 15(3):037012. PubMed ID: 20615041
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dual-wavelength polarimetry for monitoring glucose in the presence of varying birefringence.
    Wan Q; Coté GL; Dixon JB
    J Biomed Opt; 2005; 10(2):024029. PubMed ID: 15910102
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vivo glucose monitoring using dual-wavelength polarimetry to overcome corneal birefringence in the presence of motion.
    Pirnstill CW; Malik BH; Gresham VC; Coté GL
    Diabetes Technol Ther; 2012 Sep; 14(9):819-27. PubMed ID: 22691020
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Real-time, closed-loop dual-wavelength optical polarimetry for glucose monitoring.
    Malik BH; Coté GL
    J Biomed Opt; 2010; 15(1):017002. PubMed ID: 20210476
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of a real-time corneal birefringence compensated glucose sensing polarimeter.
    Cameron BD; Anumula H
    Diabetes Technol Ther; 2006 Apr; 8(2):156-64. PubMed ID: 16734546
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of temperature, pH, and corneal birefringence on polarimetric glucose monitoring in the eye.
    Baba JS; Cameron BD; Theru S; Coté GL
    J Biomed Opt; 2002 Jul; 7(3):321-8. PubMed ID: 12175281
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterizing dual wavelength polarimetry through the eye for monitoring glucose.
    Malik BH; Coté GL
    Biomed Opt Express; 2010 Oct; 1(5):1247-1258. PubMed ID: 21258546
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optical polarimetry for noninvasive glucose sensing enabled by Sagnac interferometry.
    Winkler AM; Bonnema GT; Barton JK
    Appl Opt; 2011 Jun; 50(17):2719-31. PubMed ID: 21673777
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Noninvasive polarimetric-based glucose monitoring: an in vivo study.
    Purvinis G; Cameron BD; Altrogge DM
    J Diabetes Sci Technol; 2011 Mar; 5(2):380-7. PubMed ID: 21527109
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polarimetric analysis of the human cornea measured by polarization-sensitive optical coherence tomography.
    Fanjul-Vélez F; Pircher M; Baumann B; Götzinger E; Hitzenberger CK; Arce-Diego JL
    J Biomed Opt; 2010; 15(5):056004. PubMed ID: 21054098
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of individualized compensation for anterior segment birefringence on retinal nerve fiber layer assessments as determined by scanning laser polarimetry.
    Choplin NT; Zhou Q; Knighton RW
    Ophthalmology; 2003 Apr; 110(4):719-25. PubMed ID: 12689893
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dual-Retarder Mueller Polarimetry System for Extraction of Optical Properties of Serum Albumin Protein Media.
    Phan QH; Han CY; Lien CH; Pham TT
    Sensors (Basel); 2021 May; 21(10):. PubMed ID: 34063354
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optical detection of glucose concentration in samples with scattering particles.
    Lin LH; Lo YL; Liao CC; Lin JX
    Appl Opt; 2015 Dec; 54(35):10425-31. PubMed ID: 26836866
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The use of polarized laser light through the eye for noninvasive glucose monitoring.
    Cameron BD; Gorde HW; Satheesan B; Coté GL
    Diabetes Technol Ther; 1999; 1(2):135-43. PubMed ID: 11475285
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Corneal birefringence measured by spectrally resolved Mueller matrix ellipsometry and implications for non-invasive glucose monitoring.
    Westphal P; Kaltenbach JM; Wicker K
    Biomed Opt Express; 2016 Apr; 7(4):1160-74. PubMed ID: 27446644
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mueller matrix decomposition for extraction of individual polarization parameters from complex turbid media exhibiting multiple scattering, optical activity, and linear birefringence.
    Ghosh N; Wood MF; Vitkin IA
    J Biomed Opt; 2008; 13(4):044036. PubMed ID: 19021363
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two-wavelength carbon dioxide laser application for in-vitro blood glucose measurements.
    Meinke M; Müller G; Albrecht H; Antoniou C; Richter H; Lademann J
    J Biomed Opt; 2008; 13(1):014021. PubMed ID: 18315379
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Normative retardation data corrected for the corneal polarization axis with scanning laser polarimetry.
    Greenfield DS; Knighton RW; Feuer WJ; Schiffman JC
    Ophthalmic Surg Lasers Imaging; 2003; 34(2):165-71. PubMed ID: 12665235
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.