These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Large-Scale Discovery of Disease-Disease and Disease-Gene Associations. Gligorijevic D; Stojanovic J; Djuric N; Radosavljevic V; Grbovic M; Kulathinal RJ; Obradovic Z Sci Rep; 2016 Aug; 6():32404. PubMed ID: 27578529 [TBL] [Abstract][Full Text] [Related]
4. Electronic health record phenotyping improves detection and screening of type 2 diabetes in the general United States population: A cross-sectional, unselected, retrospective study. Anderson AE; Kerr WT; Thames A; Li T; Xiao J; Cohen MS J Biomed Inform; 2016 Apr; 60():162-8. PubMed ID: 26707455 [TBL] [Abstract][Full Text] [Related]
5. -Omic and Electronic Health Record Big Data Analytics for Precision Medicine. Wu PY; Cheng CW; Kaddi CD; Venugopalan J; Hoffman R; Wang MD IEEE Trans Biomed Eng; 2017 Feb; 64(2):263-273. PubMed ID: 27740470 [TBL] [Abstract][Full Text] [Related]
6. Inferring multimodal latent topics from electronic health records. Li Y; Nair P; Lu XH; Wen Z; Wang Y; Dehaghi AAK; Miao Y; Liu W; Ordog T; Biernacka JM; Ryu E; Olson JE; Frye MA; Liu A; Guo L; Marelli A; Ahuja Y; Davila-Velderrain J; Kellis M Nat Commun; 2020 May; 11(1):2536. PubMed ID: 32439869 [TBL] [Abstract][Full Text] [Related]
7. A comparison of a multistate inpatient EHR database to the HCUP Nationwide Inpatient Sample. DeShazo JP; Hoffman MA BMC Health Serv Res; 2015 Sep; 15():384. PubMed ID: 26373538 [TBL] [Abstract][Full Text] [Related]
8. Developing an electronic health record for intractable diseases in Japan. Kimura E; Kobayashi S; Kanatani Y; Ishihara K; Mimori T; Takahashi R; Chiba T; Yoshihara H Stud Health Technol Inform; 2011; 169():255-9. PubMed ID: 21893752 [TBL] [Abstract][Full Text] [Related]
9. The Effectiveness of Multitask Learning for Phenotyping with Electronic Health Records Data. Ding DY; Simpson C; Pfohl S; Kale DC; Jung K; Shah NH Pac Symp Biocomput; 2019; 24():18-29. PubMed ID: 30864307 [TBL] [Abstract][Full Text] [Related]
10. A study of generalizability of recurrent neural network-based predictive models for heart failure onset risk using a large and heterogeneous EHR data set. Rasmy L; Wu Y; Wang N; Geng X; Zheng WJ; Wang F; Wu H; Xu H; Zhi D J Biomed Inform; 2018 Aug; 84():11-16. PubMed ID: 29908902 [TBL] [Abstract][Full Text] [Related]
11. Modeling Healthcare Quality via Compact Representations of Electronic Health Records. Stojanovic J; Gligorijevic D; Radosavljevic V; Djuric N; Grbovic M; Obradovic Z IEEE/ACM Trans Comput Biol Bioinform; 2017; 14(3):545-554. PubMed ID: 27429443 [TBL] [Abstract][Full Text] [Related]
12. Using neural attention networks to detect adverse medical events from electronic health records. Chu J; Dong W; He K; Duan H; Huang Z J Biomed Inform; 2018 Nov; 87():118-130. PubMed ID: 30336262 [TBL] [Abstract][Full Text] [Related]
13. Soft phenotyping for sepsis via EHR time-aware soft clustering. Jiang S; Gai X; Treggiari MM; Stead WW; Zhao Y; Page CD; Zhang AR J Biomed Inform; 2024 Apr; 152():104615. PubMed ID: 38423266 [TBL] [Abstract][Full Text] [Related]
14. Real-time database drawn from an electronic health record for a thoracic surgery unit: high-quality clinical data saving time and human resources. Salati M; Pompili C; Refai M; Xiumè F; Sabbatini A; Brunelli A Eur J Cardiothorac Surg; 2014 Jun; 45(6):1017-9. PubMed ID: 24394554 [TBL] [Abstract][Full Text] [Related]
15. Harnessing EHR data for health research. Tang AS; Woldemariam SR; Miramontes S; Norgeot B; Oskotsky TT; Sirota M Nat Med; 2024 Jul; 30(7):1847-1855. PubMed ID: 38965433 [TBL] [Abstract][Full Text] [Related]
16. Accuracy and Calibration of Computational Approaches for Inpatient Mortality Predictive Modeling. Nakas CT; Schütz N; Werners M; Leichtle AB PLoS One; 2016; 11(7):e0159046. PubMed ID: 27414408 [TBL] [Abstract][Full Text] [Related]
17. Incorporating temporal EHR data in predictive models for risk stratification of renal function deterioration. Singh A; Nadkarni G; Gottesman O; Ellis SB; Bottinger EP; Guttag JV J Biomed Inform; 2015 Feb; 53():220-8. PubMed ID: 25460205 [TBL] [Abstract][Full Text] [Related]
18. Phenotyping UK Electronic Health Records from 15 Million Individuals for Precision Medicine: The CALIBER Resource. Denaxas S; Gonzalez-Izquierdo A; Fitzpatrick N; Direk K; Hemingway H Stud Health Technol Inform; 2019 Jul; 262():220-223. PubMed ID: 31349307 [TBL] [Abstract][Full Text] [Related]
19. Flexible, cluster-based analysis of the electronic medical record of sepsis with composite mixture models. Mayhew MB; Petersen BK; Sales AP; Greene JD; Liu VX; Wasson TS J Biomed Inform; 2018 Feb; 78():33-42. PubMed ID: 29196114 [TBL] [Abstract][Full Text] [Related]
20. Time-sensitive clinical concept embeddings learned from large electronic health records. Xiang Y; Xu J; Si Y; Li Z; Rasmy L; Zhou Y; Tiryaki F; Li F; Zhang Y; Wu Y; Jiang X; Zheng WJ; Zhi D; Tao C; Xu H BMC Med Inform Decis Mak; 2019 Apr; 19(Suppl 2):58. PubMed ID: 30961579 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]