These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 27477321)

  • 1. Assessment of the classification abilities of the CNS multi-parametric optimization approach by the method of logistic regression.
    Raevsky OA; Polianczyk DE; Mukhametov A; Grigorev VY
    SAR QSAR Environ Res; 2016 Aug; 27(8):629-35. PubMed ID: 27477321
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Moving beyond rules: the development of a central nervous system multiparameter optimization (CNS MPO) approach to enable alignment of druglike properties.
    Wager TT; Hou X; Verhoest PR; Villalobos A
    ACS Chem Neurosci; 2010 Jun; 1(6):435-49. PubMed ID: 22778837
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contribution assessment of multiparameter optimization descriptors in CNS penetration.
    Raevsky OA; Grigorev VY; Polianczyk DE; Raevskaja OE; Dearden JC
    SAR QSAR Environ Res; 2018 Oct; 29(10):785-800. PubMed ID: 30274532
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Central Nervous System Multiparameter Optimization Desirability: Application in Drug Discovery.
    Wager TT; Hou X; Verhoest PR; Villalobos A
    ACS Chem Neurosci; 2016 Jun; 7(6):767-75. PubMed ID: 26991242
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CNS Multiparameter Optimization Approach: Is it in Accordance with Occam's Razor Principle?
    Raevsky OA
    Mol Inform; 2016 Apr; 35(3-4):94-8. PubMed ID: 27491918
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Technically Extended MultiParameter Optimization (TEMPO): An Advanced Robust Scoring Scheme To Calculate Central Nervous System Druggability and Monitor Lead Optimization.
    Ghose AK; Ott GR; Hudkins RL
    ACS Chem Neurosci; 2017 Jan; 8(1):147-154. PubMed ID: 27741392
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of CNS activity of compound libraries using substructure analysis.
    Engkvist O; Wrede P; Rester U
    J Chem Inf Comput Sci; 2003; 43(1):155-60. PubMed ID: 12546548
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Medicinal chemical properties of successful central nervous system drugs.
    Pajouhesh H; Lenz GR
    NeuroRx; 2005 Oct; 2(4):541-53. PubMed ID: 16489364
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In silico prediction of central nervous system activity of compounds. Identification of potential pharmacophores by the TOPS-MODE approach.
    Cabrera PĂ©rez MA; Sanz MB
    Bioorg Med Chem; 2004 Nov; 12(22):5833-43. PubMed ID: 15498659
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A perspective on the physicochemical and biopharmaceutic properties of marketed antiseizure drugs-From phenobarbital to cenobamate and beyond.
    Odi R; Bibi D; Wager T; Bialer M
    Epilepsia; 2020 Aug; 61(8):1543-1552. PubMed ID: 32614073
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Applications of Multi-Target Computer-Aided Methodologies in Molecular Design of CNS Drugs.
    Raevsky OA; Mukhametov A; Grigorev VY; Ustyugov A; Tsay SC; Jih-Ru Hwu R; Yarla NS; Tarasov VV; Aliev G; Bachurin SO
    Curr Med Chem; 2018; 25(39):5293-5314. PubMed ID: 28933295
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ADME evaluation in drug discovery. 3. Modeling blood-brain barrier partitioning using simple molecular descriptors.
    Hou TJ; Xu XJ
    J Chem Inf Comput Sci; 2003; 43(6):2137-52. PubMed ID: 14632466
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CNS drug design: balancing physicochemical properties for optimal brain exposure.
    Rankovic Z
    J Med Chem; 2015 Mar; 58(6):2584-608. PubMed ID: 25494650
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Defining desirable central nervous system drug space through the alignment of molecular properties, in vitro ADME, and safety attributes.
    Wager TT; Chandrasekaran RY; Hou X; Troutman MD; Verhoest PR; Villalobos A; Will Y
    ACS Chem Neurosci; 2010 Jun; 1(6):420-34. PubMed ID: 22778836
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Designing libraries with CNS activity.
    Ajay ; Bemis GW; Murcko MA
    J Med Chem; 1999 Dec; 42(24):4942-51. PubMed ID: 10585204
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Blood-Brain Barrier (BBB) Score.
    Gupta M; Lee HJ; Barden CJ; Weaver DF
    J Med Chem; 2019 Nov; 62(21):9824-9836. PubMed ID: 31603678
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CNS Physicochemical Property Space Shaped by a Diverse Set of Molecules with Experimentally Determined Exposure in the Mouse Brain.
    Rankovic Z
    J Med Chem; 2017 Jul; 60(14):5943-5954. PubMed ID: 28388050
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Physicochemical property profile for brain permeability: comparative study by different approaches.
    Raevsky OA; Grigorev VY; Polianczyk DE; Sandakov GI; Solodova SL; Yarkov AV; Bachurin SO; Dearden JC
    J Drug Target; 2016 Aug; 24(7):655-62. PubMed ID: 26755431
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Correlation of blood-brain penetration using structural descriptors.
    Katritzky AR; Kuanar M; Slavov S; Dobchev DA; Fara DC; Karelson M; Acree WE; Solov'ev VP; Varnek A
    Bioorg Med Chem; 2006 Jul; 14(14):4888-917. PubMed ID: 16697202
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular mapping in the CNS.
    Wong MG; Tehan BG; Lloyd EJ
    Curr Pharm Des; 2002; 8(17):1547-70. PubMed ID: 12052200
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.