These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
96 related articles for article (PubMed ID: 27477666)
41. Kinetic analysis of the reactions of hypobromous acid with protein components: implications for cellular damage and use of 3-bromotyrosine as a marker of oxidative stress. Pattison DI; Davies MJ Biochemistry; 2004 Apr; 43(16):4799-809. PubMed ID: 15096049 [TBL] [Abstract][Full Text] [Related]
42. Highly efficient syntheses of [methyl-11C]thymidine and its analogue 4'-[methyl-11C]thiothymidine as nucleoside PET probes for cancer cell proliferation by Pd(0)-mediated rapid C-[11C]methylation. Koyama H; Siqin ; Zhang Z; Sumi K; Hatta Y; Nagata H; Doi H; Suzuki M Org Biomol Chem; 2011 Jun; 9(11):4287-94. PubMed ID: 21503302 [TBL] [Abstract][Full Text] [Related]
43. Hypobromous acid and bromamine production by neutrophils and modulation by superoxide. Chapman AL; Skaff O; Senthilmohan R; Kettle AJ; Davies MJ Biochem J; 2009 Feb; 417(3):773-81. PubMed ID: 18851713 [TBL] [Abstract][Full Text] [Related]
44. Harnessing SeN to develop novel fluorescent probes for visualizing the variation of endogenous hypobromous acid (HOBr) during the administration of an immunotherapeutic agent. Zhang J; Liu K; Li J; Xie Y; Li Y; Wang X; Xie X; Jiao X; Tang B Chem Commun (Camb); 2021 Nov; 57(94):12679-12682. PubMed ID: 34779461 [TBL] [Abstract][Full Text] [Related]
45. Application of the cycloSal-prodrug approach for improving the biological potential of phosphorylated biomolecules. Meier C; Balzarini J Antiviral Res; 2006 Sep; 71(2-3):282-92. PubMed ID: 16735066 [TBL] [Abstract][Full Text] [Related]
46. 5-(1-Acetoxyvinyl)-cycloSaligenyl-2',3'-dideoxy-2',3'- didehydrothymidine monophosphates, a second type of new, enzymatically activated cycloSaligenyl pronucleotides. Gisch N; Pertenbreiter F; Balzarini J; Meier C J Med Chem; 2008 Dec; 51(24):8115-23. PubMed ID: 19053827 [TBL] [Abstract][Full Text] [Related]
47. Structure and antioxidant activity of brominated flavonols and flavanones. Justino GC; Rodrigues M; Florêncio MH; Mira L J Mass Spectrom; 2009 Oct; 44(10):1459-68. PubMed ID: 19708016 [TBL] [Abstract][Full Text] [Related]
48. Characterization of gamma-radiation induced decomposition products of thymidine-containing dinucleoside monophosphates by nuclear magnetic resonance spectroscopy. Baleja JD; Buchko GW; Weinfeld M; Sykes BD J Biomol Struct Dyn; 1993 Feb; 10(4):747-62. PubMed ID: 8466677 [TBL] [Abstract][Full Text] [Related]
49. Characterization of a monoclonal antibody to thymidine glycol monophosphate. Chen BX; Hubbard K; Ide H; Wallace SS; Erlanger BF Radiat Res; 1990 Nov; 124(2):131-6. PubMed ID: 2247592 [TBL] [Abstract][Full Text] [Related]
50. Theoretical investigations on the thermal decomposition mechanism of 5-hydroxy-6-hydroperoxy-5,6-dihydrothymidine in water. Chen ZQ; Xue Y J Phys Chem B; 2010 Oct; 114(39):12641-54. PubMed ID: 20839840 [TBL] [Abstract][Full Text] [Related]
51. Lithiation study on D4T. Kumamoto H; Tanaka H Nucleic Acids Symp Ser; 2000; (44):107-8. PubMed ID: 12903291 [TBL] [Abstract][Full Text] [Related]
52. A novel thymidine phosphoramidite synthon for incorporation of internucleoside phosphate linkers during automated oligodeoxynucleotide synthesis. Tabatadze D; Zamecnik P; Yanachkov I; Wright G; Pierson K; Zhang S; Bogdanov A; Metelev V Nucleosides Nucleotides Nucleic Acids; 2008 Feb; 27(2):157-72. PubMed ID: 18205070 [TBL] [Abstract][Full Text] [Related]
53. Formation of cyclic 1,N2-propanodeoxyguanosine and thymidine adducts in the reaction of the mutagen 2-bromoacrolein with calf thymus DNA. Meerman JH; Smith TR; Pearson PG; Meier GP; Nelson SD Cancer Res; 1989 Nov; 49(22):6174-9. PubMed ID: 2478281 [TBL] [Abstract][Full Text] [Related]
54. Suppression of multidrug-resistant HIV-1 reverse transcriptase primer unblocking activity by alpha-phosphate-modified thymidine analogues. Matamoros T; Deval J; Guerreiro C; Mulard L; Canard B; Menéndez-Arias L J Mol Biol; 2005 Jun; 349(3):451-63. PubMed ID: 15878178 [TBL] [Abstract][Full Text] [Related]
55. Thymidine decomposition induced by low-energy electrons and soft X rays under N2 and O2 atmospheres. Alizadeh E; Sanz AG; Madugundu GS; García G; Wagner JR; Sanche L Radiat Res; 2014 Jun; 181(6):629-40. PubMed ID: 24844650 [TBL] [Abstract][Full Text] [Related]
56. Synthesis of phosphorothioamidites derived from 3'-thio-3'-deoxythymidine and 3'-thio-2',3'-dideoxycytidine and the automated synthesis of oligodeoxynucleotides containing a 3'-S-phosphorothiolate linkage. Sabbagh G; Fettes KJ; Gosain R; O'Neil IA; Cosstick R Nucleic Acids Res; 2004; 32(2):495-501. PubMed ID: 14742664 [TBL] [Abstract][Full Text] [Related]
57. D-Arabinose-based synthesis of homo-C-d4T and homo-C-thymidine. Doboszewski B Nucleosides Nucleotides Nucleic Acids; 2009 Oct; 28(10):875-901. PubMed ID: 20183559 [TBL] [Abstract][Full Text] [Related]
58. Salicylic Acid as a Photosensitizer for Thymidine Dimerization Induced by UV. Suzuki T; Ota H; Namba Y; Fujino T Chem Pharm Bull (Tokyo); 2019; 67(2):130-134. PubMed ID: 30713273 [TBL] [Abstract][Full Text] [Related]
59. Stereocontrolled synthesis of dinucleoside boranophosphates by an oxazaphospholidine method. Oka N; Maizuru Y; Shimizu M; Saigo K; Wada T Nucleic Acids Symp Ser (Oxf); 2005; (49):131-2. PubMed ID: 17150668 [TBL] [Abstract][Full Text] [Related]
60. Photoinduced reductive repair of thymine glycol: implications for excess electron transfer through DNA containing modified bases. Ito T; Kondo A; Terada S; Nishimoto S J Am Chem Soc; 2006 Aug; 128(33):10934-42. PubMed ID: 16910690 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]