These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
367 related articles for article (PubMed ID: 27477688)
1. Spin-polarized transport in hydrogen-passivated graphene and silicene nanoribbons with magnetic transition-metal substituents. García-Fuente A; Gallego LJ; Vega A Phys Chem Chem Phys; 2016 Aug; 18(32):22606-16. PubMed ID: 27477688 [TBL] [Abstract][Full Text] [Related]
2. Spin-dependent electronic conduction along zigzag graphene nanoribbons bearing adsorbed Ni and Fe nanostructures. García-Fuente A; Gallego LJ; Vega A J Phys Condens Matter; 2014 Apr; 26(16):165302. PubMed ID: 24691196 [TBL] [Abstract][Full Text] [Related]
3. Band gap engineering of silicene zigzag nanoribbons with perpendicular electric fields: a theoretical study. Liang Y; Wang V; Mizuseki H; Kawazoe Y J Phys Condens Matter; 2012 Nov; 24(45):455302. PubMed ID: 23085744 [TBL] [Abstract][Full Text] [Related]
4. Origin of spin polarization in an edge boron doped zigzag graphene nanoribbon: a potential spin filter. Chakrabarty S; Wasey AHMA; Thapa R; Das GP Nanotechnology; 2018 Aug; 29(34):345203. PubMed ID: 29862988 [TBL] [Abstract][Full Text] [Related]
5. Spin currents and filtering behavior in zigzag graphene nanoribbons with adsorbed molybdenum chains. García-Fuente A; Gallego LJ; Vega A J Phys Condens Matter; 2015 Apr; 27(13):135301. PubMed ID: 25765052 [TBL] [Abstract][Full Text] [Related]
6. Accurate prediction of the electronic properties of low-dimensional graphene derivatives using a screened hybrid density functional. Barone V; Hod O; Peralta JE; Scuseria GE Acc Chem Res; 2011 Apr; 44(4):269-79. PubMed ID: 21388164 [TBL] [Abstract][Full Text] [Related]
7. Surface engineering of phosphorene nanoribbons by transition metal heteroatoms for spintronics. Dong MM; Wang ZQ; Zhang GP; Wang CK; Fu XX Phys Chem Chem Phys; 2019 Feb; 21(9):4879-4887. PubMed ID: 30778495 [TBL] [Abstract][Full Text] [Related]
8. Electronic and transport properties of boron-doped graphene nanoribbons. Martins TB; Miwa RH; da Silva AJ; Fazzio A Phys Rev Lett; 2007 May; 98(19):196803. PubMed ID: 17677646 [TBL] [Abstract][Full Text] [Related]
9. Theoretical Investigation of the Interfaces and Mechanisms of Induced Spin Polarization of 1D Narrow Zigzag Graphene- and h-BN Nanoribbons on a SrO-Terminated LSMO(001) Surface. Avramov P; Kuzubov AA; Kuklin AV; Lee H; Kovaleva EA; Sakai S; Entani S; Naramoto H; Sorokin PB J Phys Chem A; 2017 Jan; 121(3):680-689. PubMed ID: 28075136 [TBL] [Abstract][Full Text] [Related]
10. Spin splitting of dopant edge state in magnetic zigzag graphene nanoribbons. Blackwell RE; Zhao F; Brooks E; Zhu J; Piskun I; Wang S; Delgado A; Lee YL; Louie SG; Fischer FR Nature; 2021 Dec; 600(7890):647-652. PubMed ID: 34937899 [TBL] [Abstract][Full Text] [Related]
11. Realizing semiconductor-half-metal transition in zigzag graphene nanoribbons supported on hybrid fluorographene-graphane nanoribbons. Tang S; Cao X Phys Chem Chem Phys; 2014 Nov; 16(42):23214-23. PubMed ID: 25254929 [TBL] [Abstract][Full Text] [Related]
12. First-principles study of line-defect-embedded zigzag graphene nanoribbons: electronic and magnetic properties. Guan Z; Si C; Hu S; Duan W Phys Chem Chem Phys; 2016 Apr; 18(17):12350-6. PubMed ID: 27087060 [TBL] [Abstract][Full Text] [Related]
13. Hybridization induced metallic and magnetic edge states in noble transition-metal-dichalcogenides of PtX Liu S; Liu Z Phys Chem Chem Phys; 2018 Aug; 20(33):21441-21446. PubMed ID: 30087962 [TBL] [Abstract][Full Text] [Related]
14. Large spin-filtering effect in Ti-doped defective zigzag graphene nanoribbon. Tawfik SA; Cui XY; Ringer SP; Stampfl C Phys Chem Chem Phys; 2016 Jun; 18(24):16224-8. PubMed ID: 27252042 [TBL] [Abstract][Full Text] [Related]
15. Electronic Structures of Silicene Nanoribbons: Two-Edge-Chemistry Modification and First-Principles Study. Yao Y; Liu A; Bai J; Zhang X; Wang R Nanoscale Res Lett; 2016 Dec; 11(1):371. PubMed ID: 27550051 [TBL] [Abstract][Full Text] [Related]
16. Flat Zigzag Silicene Nanoribbon with Be Bridge. Takahashi M ACS Omega; 2021 May; 6(18):12099-12104. PubMed ID: 34056363 [TBL] [Abstract][Full Text] [Related]
17. Penta-Hexa-Graphene Nanoribbons: Intrinsic Magnetism and Edge Effect Induce Spin-Gapless Semiconducting and Half-Metallic Properties. Deng YX; Chen SZ; Zhang Y; Yu X; Xie ZX; Tang LM; Chen KQ ACS Appl Mater Interfaces; 2020 Nov; 12(47):53088-53095. PubMed ID: 33197167 [TBL] [Abstract][Full Text] [Related]
18. Robust generation of half-metallic transport and pure spin current with photogalvanic effect in zigzag silicene nanoribbons. Jiang P; Kang L; Tao X; Cao N; Hao H; Zheng X; Zhang L; Zeng Z J Phys Condens Matter; 2019 Dec; 31(49):495701. PubMed ID: 31437823 [TBL] [Abstract][Full Text] [Related]
19. SAM-like arrangement of thiolated graphene nanoribbons: decoupling the edge state from the metal substrate. Cabrera-Sanfelix P; Arnau A; Sánchez-Portal D Phys Chem Chem Phys; 2013 Mar; 15(9):3233-42. PubMed ID: 23344647 [TBL] [Abstract][Full Text] [Related]
20. Magnetic structure and magnetic transport properties of graphene nanoribbons with sawtooth zigzag edges. Wang D; Zhang Z; Zhu Z; Liang B Sci Rep; 2014 Dec; 4():7587. PubMed ID: 25533701 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]