BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 27477907)

  • 1. Engineered Covalent Inactivation of TFIIH-Kinase Reveals an Elongation Checkpoint and Results in Widespread mRNA Stabilization.
    Rodríguez-Molina JB; Tseng SC; Simonett SP; Taunton J; Ansari AZ
    Mol Cell; 2016 Aug; 63(3):433-44. PubMed ID: 27477907
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chemical inhibition of the TFIIH-associated kinase Cdk7/Kin28 does not impair global mRNA synthesis.
    Kanin EI; Kipp RT; Kung C; Slattery M; Viale A; Hahn S; Shokat KM; Ansari AZ
    Proc Natl Acad Sci U S A; 2007 Apr; 104(14):5812-7. PubMed ID: 17392431
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mutual targeting of mediator and the TFIIH kinase Kin28.
    Guidi BW; Bjornsdottir G; Hopkins DC; Lacomis L; Erdjument-Bromage H; Tempst P; Myers LC
    J Biol Chem; 2004 Jul; 279(28):29114-20. PubMed ID: 15126497
    [TBL] [Abstract][Full Text] [Related]  

  • 4. KIN28 encodes a C-terminal domain kinase that controls mRNA transcription in Saccharomyces cerevisiae but lacks cyclin-dependent kinase-activating kinase (CAK) activity.
    Cismowski MJ; Laff GM; Solomon MJ; Reed SI
    Mol Cell Biol; 1995 Jun; 15(6):2983-92. PubMed ID: 7760796
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phosphorylation of the RNA polymerase II C-terminal domain by TFIIH kinase is not essential for transcription of Saccharomyces cerevisiae genome.
    Hong SW; Hong SM; Yoo JW; Lee YC; Kim S; Lis JT; Lee DK
    Proc Natl Acad Sci U S A; 2009 Aug; 106(34):14276-80. PubMed ID: 19666497
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carboxy-terminal region of the yeast heat shock factor contains two domains that make transcription independent of the TFIIH protein kinase.
    Sakurai H; Hashikawa N; Imazu H; Fukasawa T
    Genes Cells; 2003 Dec; 8(12):951-61. PubMed ID: 14750950
    [TBL] [Abstract][Full Text] [Related]  

  • 7. TFIIH kinase places bivalent marks on the carboxy-terminal domain of RNA polymerase II.
    Akhtar MS; Heidemann M; Tietjen JR; Zhang DW; Chapman RD; Eick D; Ansari AZ
    Mol Cell; 2009 May; 34(3):387-93. PubMed ID: 19450536
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CDK7 kinase activity promotes RNA polymerase II promoter escape by facilitating initiation factor release.
    Velychko T; Mohammad E; Ferrer-Vicens I; Parfentev I; Werner M; Studniarek C; Schwalb B; Urlaub H; Murphy S; Cramer P; Lidschreiber M
    Mol Cell; 2024 Jun; 84(12):2287-2303.e10. PubMed ID: 38821049
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kin28, the TFIIH-associated carboxy-terminal domain kinase, facilitates the recruitment of mRNA processing machinery to RNA polymerase II.
    Rodriguez CR; Cho EJ; Keogh MC; Moore CL; Greenleaf AL; Buratowski S
    Mol Cell Biol; 2000 Jan; 20(1):104-12. PubMed ID: 10594013
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kin28 is found within TFIIH and a Kin28-Ccl1-Tfb3 trimer complex with differential sensitivities to T-loop phosphorylation.
    Keogh MC; Cho EJ; Podolny V; Buratowski S
    Mol Cell Biol; 2002 Mar; 22(5):1288-97. PubMed ID: 11839796
    [TBL] [Abstract][Full Text] [Related]  

  • 11. TFIIH-associated Cdk7 kinase functions in phosphorylation of C-terminal domain Ser7 residues, promoter-proximal pausing, and termination by RNA polymerase II.
    Glover-Cutter K; Larochelle S; Erickson B; Zhang C; Shokat K; Fisher RP; Bentley DL
    Mol Cell Biol; 2009 Oct; 29(20):5455-64. PubMed ID: 19667075
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two cyclin-dependent kinases promote RNA polymerase II transcription and formation of the scaffold complex.
    Liu Y; Kung C; Fishburn J; Ansari AZ; Shokat KM; Hahn S
    Mol Cell Biol; 2004 Feb; 24(4):1721-35. PubMed ID: 14749387
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gene-specific RNA polymerase II phosphorylation and the CTD code.
    Kim H; Erickson B; Luo W; Seward D; Graber JH; Pollock DD; Megee PC; Bentley DL
    Nat Struct Mol Biol; 2010 Oct; 17(10):1279-86. PubMed ID: 20835241
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vps factors are required for efficient transcription elongation in budding yeast.
    Gaur NA; Hasek J; Brickner DG; Qiu H; Zhang F; Wong CM; Malcova I; Vasicova P; Brickner JH; Hinnebusch AG
    Genetics; 2013 Mar; 193(3):829-51. PubMed ID: 23335340
    [TBL] [Abstract][Full Text] [Related]  

  • 15. THZ1 Reveals Roles for Cdk7 in Co-transcriptional Capping and Pausing.
    Nilson KA; Guo J; Turek ME; Brogie JE; Delaney E; Luse DS; Price DH
    Mol Cell; 2015 Aug; 59(4):576-87. PubMed ID: 26257281
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interactions of Cdk7 and Kin28 with Hint/PKCI-1 and Hnt1 histidine triad proteins.
    Korsisaari N; Mäkelä TP
    J Biol Chem; 2000 Nov; 275(45):34837-40. PubMed ID: 10958787
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pol II CTD kinases Bur1 and Kin28 promote Spt5 CTR-independent recruitment of Paf1 complex.
    Qiu H; Hu C; Gaur NA; Hinnebusch AG
    EMBO J; 2012 Aug; 31(16):3494-505. PubMed ID: 22796944
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A transcriptional autoregulatory loop for KIN28-CCL1 and SRB10-SRB11, each encoding RNA polymerase II CTD kinase-cyclin pair, stimulates the meiotic development of S. cerevisiae.
    Ohkuni K; Yamashita I
    Yeast; 2000 Jun; 16(9):829-46. PubMed ID: 10861906
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Activating phosphorylation of the Kin28p subunit of yeast TFIIH by Cak1p.
    Kimmelman J; Kaldis P; Hengartner CJ; Laff GM; Koh SS; Young RA; Solomon MJ
    Mol Cell Biol; 1999 Jul; 19(7):4774-87. PubMed ID: 10373527
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Defective Kin28, a subunit of yeast TFIIH, impairs transcription-coupled but not global genome nucleotide excision repair.
    Tijsterman M; Tasseron-de Jong JG; Verhage RA; Brouwer J
    Mutat Res; 1998 Dec; 409(3):181-8. PubMed ID: 9875293
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.