These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 27478091)

  • 1. Robust analysis of an underwater navigational strategy in electrically heterogeneous corridors.
    Dimble KD; Ranganathan BN; Keshavan J; Humbert JS
    Bioinspir Biomim; 2016 Aug; 11(4):045004. PubMed ID: 27478091
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrolocation-based underwater obstacle avoidance using wide-field integration methods.
    Dimble KD; Faddy JM; Humbert JS
    Bioinspir Biomim; 2014 Mar; 9(1):016012. PubMed ID: 24451219
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A study of amplitude information-frequency characteristics for underwater active electrolocation system.
    Peng J
    Bioinspir Biomim; 2015 Nov; 10(6):066007. PubMed ID: 26531142
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A bio-inspired electrocommunication system for small underwater robots.
    Wang W; Liu J; Xie G; Wen L; Zhang J
    Bioinspir Biomim; 2017 Mar; 12(3):036002. PubMed ID: 28220758
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reactive underwater object inspection based on artificial electric sense.
    Lebastard V; Boyer F; Lanneau S
    Bioinspir Biomim; 2016 Jul; 11(4):045003. PubMed ID: 27458187
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human-in-the-loop active electrosense.
    Fang S; Peshkin M; MacIver MA
    Bioinspir Biomim; 2016 Dec; 12(1):014001. PubMed ID: 27995901
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The bioinspiring potential of weakly electric fish.
    Caputi AA
    Bioinspir Biomim; 2017 Feb; 12(2):025004. PubMed ID: 28151730
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigation of Collective Behaviour and Electrocommunication in the Weakly Electric Fish, Mormyrus rume, through a biomimetic Robotic Dummy Fish.
    Donati E; Worm M; Mintchev S; van der Wiel M; Benelli G; von der Emde G; Stefanini C
    Bioinspir Biomim; 2016 Dec; 11(6):066009. PubMed ID: 27906686
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A biomimetic vision-based hovercraft accounts for bees' complex behaviour in various corridors.
    Roubieu FL; Serres JR; Colonnier F; Franceschini N; Viollet S; Ruffier F
    Bioinspir Biomim; 2014 Sep; 9(3):036003. PubMed ID: 24615558
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An active electrolocation catheter system for imaging and analysis of coronary plaques.
    Gottwald M; Matuschek A; von der Emde G
    Bioinspir Biomim; 2017 Jan; 12(1):015002. PubMed ID: 28129203
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A μ analysis-based, controller-synthesis framework for robust bioinspired visual navigation in less-structured environments.
    Keshavan J; Gremillion G; Escobar-Alvarez H; Humbert JS
    Bioinspir Biomim; 2014 Jun; 9(2):025011. PubMed ID: 24852145
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Amplitude information-frequency characteristics for multi-frequency excitation of underwater active electrolocation systems.
    Ren Q; Peng J; Chen H
    Bioinspir Biomim; 2019 Nov; 15(1):016004. PubMed ID: 31661679
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distributed flow estimation and closed-loop control of an underwater vehicle with a multi-modal artificial lateral line.
    DeVries L; Lagor FD; Lei H; Tan X; Paley DA
    Bioinspir Biomim; 2015 Mar; 10(2):025002. PubMed ID: 25807584
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A bio-inspired electric camera for short-range object inspection in murky waters.
    Gottwald M; Herzog H; von der Emde G
    Bioinspir Biomim; 2019 Apr; 14(3):035002. PubMed ID: 30958795
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A trajectory tracking controller for an underwater hexapod vehicle.
    Plamondon N; Nahon M
    Bioinspir Biomim; 2009 Sep; 4(3):036005. PubMed ID: 19726834
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bio-Inspired Approach for Long-Range Underwater Navigation Using Model Predictive Control.
    Zhang Y; Liu X; Luo M; Yang C
    IEEE Trans Cybern; 2021 Aug; 51(8):4286-4297. PubMed ID: 31449042
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evolution of time-coding systems in weakly electric fishes.
    Kawasaki M
    Zoolog Sci; 2009 Sep; 26(9):587-99. PubMed ID: 19799509
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Real-Time Reaction Obstacle Avoidance Algorithm for Autonomous Underwater Vehicles in Unknown Environments.
    Yan Z; Li J; Zhang G; Wu Y
    Sensors (Basel); 2018 Feb; 18(2):. PubMed ID: 29393915
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrosensory maps form a substrate for the distributed and parallel control of behavioral responses in weakly electric fish.
    Heiligenberg W
    Brain Behav Evol; 1988; 31(1):6-16. PubMed ID: 3334906
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomimetic and bio-inspired robotics in electric fish research.
    Neveln ID; Bai Y; Snyder JB; Solberg JR; Curet OM; Lynch KM; MacIver MA
    J Exp Biol; 2013 Jul; 216(Pt 13):2501-14. PubMed ID: 23761475
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.