BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 27478158)

  • 21. Blastocystis legumain is localized on the cell surface, and specific inhibition of its activity implicates a pro-survival role for the enzyme.
    Wu B; Yin J; Texier C; Roussel M; Tan KS
    J Biol Chem; 2010 Jan; 285(3):1790-8. PubMed ID: 19915007
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cloning and expression of the cathepsin F-like cysteine protease gene in Escherichia coli and its characterization.
    Joo HS; Koo KB; Park KI; Bae SH; Yun JW; Chang CS; Choi JW
    J Microbiol; 2007 Apr; 45(2):158-67. PubMed ID: 17483802
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Using peptidic inhibitors to systematically probe the S1' site of caspase-3 and caspase-7.
    Goode DR; Sharma AK; Hergenrother PJ
    Org Lett; 2005 Aug; 7(16):3529-32. PubMed ID: 16048334
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Protease cleavage site fingerprinting by label-free in-gel degradomics reveals pH-dependent specificity switch of legumain.
    Vidmar R; Vizovišek M; Turk D; Turk B; Fonović M
    EMBO J; 2017 Aug; 36(16):2455-2465. PubMed ID: 28733325
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dynamic imaging of protease activity with fluorescently quenched activity-based probes.
    Blum G; Mullins SR; Keren K; Fonovic M; Jedeszko C; Rice MJ; Sloane BF; Bogyo M
    Nat Chem Biol; 2005 Sep; 1(4):203-9. PubMed ID: 16408036
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Characterization of legumain.
    Schwarz G; Brandenburg J; Reich M; Burster T; Driessen C; Kalbacher H
    Biol Chem; 2002 Nov; 383(11):1813-6. PubMed ID: 12530547
    [TBL] [Abstract][Full Text] [Related]  

  • 27. From covalent glycosidase inhibitors to activity-based glycosidase probes.
    Willems LI; Jiang J; Li KY; Witte MD; Kallemeijn WW; Beenakker TJ; Schröder SP; Aerts JM; van der Marel GA; Codée JD; Overkleeft HS
    Chemistry; 2014 Aug; 20(35):10864-72. PubMed ID: 25100671
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Asparagine endopeptidase is an innovative therapeutic target for neurodegenerative diseases.
    Zhang Z; Xie M; Ye K
    Expert Opin Ther Targets; 2016 Oct; 20(10):1237-45. PubMed ID: 27115710
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The two cysteine endopeptidases of legume seeds: purification and characterization by use of specific fluorometric assays.
    Kembhavi AA; Buttle DJ; Knight CG; Barrett AJ
    Arch Biochem Biophys; 1993 Jun; 303(2):208-13. PubMed ID: 8512309
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Intra- and extracellular regulation of activity and processing of legumain by cystatin E/M.
    Smith R; Johansen HT; Nilsen H; Haugen MH; Pettersen SJ; Mælandsmo GM; Abrahamson M; Solberg R
    Biochimie; 2012 Dec; 94(12):2590-9. PubMed ID: 22902879
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Marked small molecule libraries: a truncated approach to molecular probe design.
    Inverarity IA; Hulme AN
    Org Biomol Chem; 2007 Feb; 5(4):636-43. PubMed ID: 17285172
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Development of a potent and selective cell penetrant Legumain inhibitor.
    Ness KA; Eddie SL; Higgins CA; Templeman A; D'Costa Z; Gaddale KK; Bouzzaoui S; Jordan L; Janssen D; Harrison T; Burkamp F; Young A; Burden R; Scott CJ; Mullan PB; Williams R
    Bioorg Med Chem Lett; 2015 Dec; 25(23):5642-5. PubMed ID: 26522952
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Synthesis of a novel legumain-cleavable colchicine prodrug with cell-specific toxicity.
    Smith RL; Åstrand OA; Nguyen LM; Elvestrand T; Hagelin G; Solberg R; Johansen HT; Rongved P
    Bioorg Med Chem; 2014 Jul; 22(13):3309-15. PubMed ID: 24842619
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Identifying selective protein tyrosine phosphatase substrates and inhibitors from a fluorogenic, combinatorial peptide library.
    Mitra S; Barrios AM
    Chembiochem; 2008 May; 9(8):1216-9. PubMed ID: 18412190
    [No Abstract]   [Full Text] [Related]  

  • 35. Legumain forms from plants and animals differ in their specificity.
    Rotari VI; Dando PM; Barrett AJ
    Biol Chem; 2001 Jun; 382(6):953-9. PubMed ID: 11501761
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A novel serine protease with caspase- and legumain-like activities from edible basidiomycete Flammulina velutipes.
    Iketani A; Nakamura M; Suzuki Y; Awai K; Shioi Y
    Fungal Biol; 2013 Mar; 117(3):173-81. PubMed ID: 23537874
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Functional imaging of legumain in cancer using a new quenched activity-based probe.
    Edgington LE; Verdoes M; Ortega A; Withana NP; Lee J; Syed S; Bachmann MH; Blum G; Bogyo M
    J Am Chem Soc; 2013 Jan; 135(1):174-82. PubMed ID: 23215039
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Selective detection of caspase-3 versus caspase-7 using activity-based probes with key unnatural amino acids.
    Vickers CJ; González-Páez GE; Wolan DW
    ACS Chem Biol; 2013 Jul; 8(7):1558-66. PubMed ID: 23614665
    [TBL] [Abstract][Full Text] [Related]  

  • 39. IrAE: an asparaginyl endopeptidase (legumain) in the gut of the hard tick Ixodes ricinus.
    Sojka D; Hajdusek O; Dvorák J; Sajid M; Franta Z; Schneider EL; Craik CS; Vancová M; Buresová V; Bogyo M; Sexton KB; McKerrow JH; Caffrey CR; Kopácek P
    Int J Parasitol; 2007 Jun; 37(7):713-24. PubMed ID: 17336985
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Development of near-infrared fluorophore (NIRF)-labeled activity-based probes for in vivo imaging of legumain.
    Lee J; Bogyo M
    ACS Chem Biol; 2010 Feb; 5(2):233-43. PubMed ID: 20017516
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.