These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
112 related articles for article (PubMed ID: 27478175)
1. In Silico Models to Discriminate Compounds Inducing and Noninducing Toxic Myopathy. Hu X; Yan A Mol Inform; 2012 Jan; 31(1):27-39. PubMed ID: 27478175 [TBL] [Abstract][Full Text] [Related]
2. In silico prediction of rhabdomyolysis of compounds by self-organizing map and support vector machine. Hu X; Yan A Toxicol In Vitro; 2011 Dec; 25(8):2017-24. PubMed ID: 21856410 [TBL] [Abstract][Full Text] [Related]
3. Classification of Aurora-A Kinase Inhibitors Using Self-Organizing Map (SOM) and Support Vector Machine (SVM). Wang L; Wang Z; Yan A; Yuan Q Mol Inform; 2011 Jan; 30(1):35-44. PubMed ID: 27467876 [TBL] [Abstract][Full Text] [Related]
4. Classification of Aurora kinase inhibitors by self-organizing map (SOM) and support vector machine (SVM). Yan A; Nie X; Wang K; Wang M Eur J Med Chem; 2013 Mar; 61():73-83. PubMed ID: 22796044 [TBL] [Abstract][Full Text] [Related]
5. Discrimination of Active and Weakly Active Human BACE1 Inhibitors Using Self-Organizing Map and Support Vector Machine. Li H; Wang M; Gong YN; Yan A Comb Chem High Throughput Screen; 2016; 19(6):470-80. PubMed ID: 27141991 [TBL] [Abstract][Full Text] [Related]
6. Self-Organizing Map (SOM) and Support Vector Machine (SVM) Models for the Prediction of Human Epidermal Growth Factor Receptor (EGFR/ ErbB-1) Inhibitors. Kong Y; Qu D; Chen X; Gong YN; Yan A Comb Chem High Throughput Screen; 2016; 19(5):400-11. PubMed ID: 27074760 [TBL] [Abstract][Full Text] [Related]
7. Using self-organizing map (SOM) and support vector machine (SVM) for classification of selectivity of ACAT inhibitors. Wang L; Wang M; Yan A; Dai B Mol Divers; 2013 Feb; 17(1):85-96. PubMed ID: 23124952 [TBL] [Abstract][Full Text] [Related]
8. In-silico prediction of blood-brain barrier permeability. Yan A; Liang H; Chong Y; Nie X; Yu C SAR QSAR Environ Res; 2013 Jan; 24(1):61-74. PubMed ID: 23092117 [TBL] [Abstract][Full Text] [Related]
9. Computational models for the classification of mPGES-1 inhibitors with fingerprint descriptors. Xia Z; Yan A Mol Divers; 2017 Aug; 21(3):661-675. PubMed ID: 28484935 [TBL] [Abstract][Full Text] [Related]
10. Prediction of human intestinal absorption by GA feature selection and support vector machine regression. Yan A; Wang Z; Cai Z Int J Mol Sci; 2008 Oct; 9(10):1961-76. PubMed ID: 19325729 [TBL] [Abstract][Full Text] [Related]
11. SAR study on inhibitors of GIIA secreted phospholipase A Zhang S; Li Y; Qin Z; Tu G; Chen G; Yan A Chem Biol Drug Des; 2019 May; 93(5):666-684. PubMed ID: 30582300 [TBL] [Abstract][Full Text] [Related]
12. Prediction of bioactivity of HIV-1 integrase ST inhibitors by multilinear regression analysis and support vector machine. Xuan S; Wu Y; Chen X; Liu J; Yan A Bioorg Med Chem Lett; 2013 Mar; 23(6):1648-55. PubMed ID: 23395655 [TBL] [Abstract][Full Text] [Related]
13. Discriminating of ATP competitive Src kinase inhibitors and decoys using self-organizing map and support vector machine. Yan A; Hu X; Wang K; Sun J Mol Divers; 2013 Feb; 17(1):75-83. PubMed ID: 23117252 [TBL] [Abstract][Full Text] [Related]
14. SAR and QSAR models of cyclooxygenase-1 (COX-1) inhibitors. Xi Y; Qin Z; Yan A SAR QSAR Environ Res; 2018 Oct; 29(10):755-784. PubMed ID: 30274533 [TBL] [Abstract][Full Text] [Related]
15. Computational models on quantitative prediction of bioactivity of HIV-1 integrase 3' processing inhibitors. Kong Y; Xuan S; Yan A SAR QSAR Environ Res; 2014; 25(9):729-46. PubMed ID: 25121566 [TBL] [Abstract][Full Text] [Related]
16. Prediction of biological activity of Aurora-A kinase inhibitors by multilinear regression analysis and support vector machine. Yan A; Chong Y; Wang L; Hu X; Wang K Bioorg Med Chem Lett; 2011 Apr; 21(8):2238-43. PubMed ID: 21421314 [TBL] [Abstract][Full Text] [Related]
17. SAR and QSAR study on the bioactivities of human epidermal growth factor receptor-2 (HER2) inhibitors. Qu D; Yan A; Zhang JS SAR QSAR Environ Res; 2017 Feb; 28(2):111-132. PubMed ID: 28235391 [TBL] [Abstract][Full Text] [Related]
18. Classification of Aurora B kinase inhibitors using computational models. Liu R; Nie X; Zhong M; Hou X; Xuan S; Yan A Comb Chem High Throughput Screen; 2014 Feb; 17(2):114-23. PubMed ID: 24152178 [TBL] [Abstract][Full Text] [Related]
19. Prediction of chemical carcinogenicity by machine learning approaches. Tan NX; Rao HB; Li ZR; Li XY SAR QSAR Environ Res; 2009; 20(1-2):27-75. PubMed ID: 19343583 [TBL] [Abstract][Full Text] [Related]
20. In silico prediction of major drug clearance pathways by support vector machines with feature-selected descriptors. Toshimoto K; Wakayama N; Kusama M; Maeda K; Sugiyama Y; Akiyama Y Drug Metab Dispos; 2014 Nov; 42(11):1811-9. PubMed ID: 25128502 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]