BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 27478268)

  • 1. Formation of Ruthenium Carbenes by
    Leutzsch M; Wolf LM; Gupta P; Fuchs M; Thiel W; Farès C; Fürstner A
    Angew Chem Weinheim Bergstr Ger; 2015 Oct; 127(42):12608-12613. PubMed ID: 27478268
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Formation of ruthenium carbenes by gem-hydrogen transfer to internal alkynes: implications for alkyne trans-hydrogenation.
    Leutzsch M; Wolf LM; Gupta P; Fuchs M; Thiel W; Farès C; Fürstner A
    Angew Chem Int Ed Engl; 2015 Oct; 54(42):12431-6. PubMed ID: 26332643
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Half-Sandwich Ruthenium Carbene Complexes Link trans-Hydrogenation and gem-Hydrogenation of Internal Alkynes.
    Guthertz A; Leutzsch M; Wolf LM; Gupta P; Rummelt SM; Goddard R; Farès C; Thiel W; Fürstner A
    J Am Chem Soc; 2018 Feb; 140(8):3156-3169. PubMed ID: 29429344
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Alkyne gem-Hydrogenation: Formation of Pianostool Ruthenium Carbene Complexes and Analysis of Their Chemical Character.
    Biberger T; Gordon CP; Leutzsch M; Peil S; Guthertz A; Copéret C; Fürstner A
    Angew Chem Int Ed Engl; 2019 Jun; 58(26):8845-8850. PubMed ID: 31025788
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrogenative Metathesis of Enynes via Piano-Stool Ruthenium Carbene Complexes Formed by Alkyne
    Peil S; Bistoni G; Goddard R; Fürstner A
    J Am Chem Soc; 2020 Oct; 142(43):18541-18553. PubMed ID: 33073575
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrogenative Cycloisomerization and Sigmatropic Rearrangement Reactions of Cationic Ruthenium Carbenes Formed by Catalytic Alkyne gem-Hydrogenation.
    Biberger T; Hess SN; Leutzsch M; Fürstner A
    Angew Chem Int Ed Engl; 2022 Feb; 61(8):e202113827. PubMed ID: 34911159
    [TBL] [Abstract][Full Text] [Related]  

  • 7. C-H Insertion via Ruthenium Catalyzed
    Peil S; Gutiérrez González A; Leutzsch M; Fürstner A
    J Am Chem Soc; 2022 Mar; 144(9):4158-4167. PubMed ID: 35170941
    [No Abstract]   [Full Text] [Related]  

  • 8. Grubbs Metathesis Enabled by a Light-Driven gem-Hydrogenation of Internal Alkynes.
    Biberger T; Zachmann RJ; Fürstner A
    Angew Chem Int Ed Engl; 2020 Oct; 59(42):18423-18429. PubMed ID: 32608043
    [TBL] [Abstract][Full Text] [Related]  

  • 9. trans-Hydrogenation, gem-Hydrogenation, and trans-Hydrometalation of Alkynes: An Interim Report on an Unorthodox Reactivity Paradigm.
    Fürstner A
    J Am Chem Soc; 2019 Jan; 141(1):11-24. PubMed ID: 30422659
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Alkyne Semihydrogenation with a Well-Defined Nonclassical Co-H
    Tokmic K; Fout AR
    J Am Chem Soc; 2016 Oct; 138(41):13700-13705. PubMed ID: 27709917
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ru-Catalyzed Migratory Geminal Semihydrogenation of Internal Alkynes to Terminal Olefins.
    Song L; Feng Q; Wang Y; Ding S; Wu YD; Zhang X; Chung LW; Sun J
    J Am Chem Soc; 2019 Oct; 141(43):17441-17451. PubMed ID: 31596081
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanistic Divergence in the Hydrogenative Synthesis of Furans and Butenolides: Ruthenium Carbenes Formed by gem-Hydrogenation or through Carbophilic Activation of Alkynes.
    Peil S; Fürstner A
    Angew Chem Int Ed Engl; 2019 Dec; 58(51):18476-18481. PubMed ID: 31609498
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ruthenium-Catalyzed Geminal Hydroborative Cyclization of Enynes.
    Tan YX; Li S; Song L; Zhang X; Wu YD; Sun J
    Angew Chem Int Ed Engl; 2022 Aug; 61(31):e202204319. PubMed ID: 35596681
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heterogeneous Isomerization for Stereoselective Alkyne Hydrogenation to
    Zhang W; Qin R; Fu G; Zheng N
    J Am Chem Soc; 2021 Sep; 143(38):15882-15890. PubMed ID: 34533929
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ruthenium(II) Complexes Containing Lutidine-Derived Pincer CNC Ligands: Synthesis, Structure, and Catalytic Hydrogenation of C-N bonds.
    Hernández-Juárez M; López-Serrano J; Lara P; Morales-Cerón JP; Vaquero M; Álvarez E; Salazar V; Suárez A
    Chemistry; 2015 May; 21(20):7540-55. PubMed ID: 25820229
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Light-Driven gem Hydrogenation: An Orthogonal Entry into "Second-Generation" Ruthenium Carbene Catalysts for Olefin Metathesis.
    Zachmann RJ; Fürstner A
    Chemistry; 2021 May; 27(28):7663-7666. PubMed ID: 33871083
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New Insights and Predictions into Complex Homogeneous Reactions Enabled by Computational Chemistry in Synergy with Experiments: Isotopes and Mechanisms.
    Lan J; Li X; Yang Y; Zhang X; Chung LW
    Acc Chem Res; 2022 Apr; 55(8):1109-1123. PubMed ID: 35385649
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Steric and Electronic Effects of Bidentate Phosphine Ligands on Ruthenium(II)-Catalyzed Hydrogenation of Carbon Dioxide.
    Zhang P; Ni SF; Dang L
    Chem Asian J; 2016 Sep; 11(18):2528-36. PubMed ID: 27500596
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ru-Catalyzed Geminal Hydroboration of Silyl Alkynes via a New
    Feng Q; Wu H; Li X; Song L; Chung LW; Wu YD; Sun J
    J Am Chem Soc; 2020 Aug; 142(32):13867-13877. PubMed ID: 32668156
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Elevated catalytic activity of ruthenium(II)-porphyrin-catalyzed carbene/nitrene transfer and insertion reactions with N-heterocyclic carbene ligands.
    Chan KH; Guan X; Lo VK; Che CM
    Angew Chem Int Ed Engl; 2014 Mar; 53(11):2982-7. PubMed ID: 24520042
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.