These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 27478363)

  • 1. Fluid Dynamics of Biomimetic Pectoral Fin Propulsion Using Immersed Boundary Method.
    Li N; Su Y
    Appl Bionics Biomech; 2016; 2016():2721968. PubMed ID: 27478363
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wake structure and hydrodynamic performance of flapping foils mimicking fish fin kinematics.
    Liu W; Li N; Zhao J; Su Y
    Saudi J Biol Sci; 2017 Sep; 24(6):1344-1354. PubMed ID: 28855830
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A hydrodynamic analysis of fish swimming speed: wake structure and locomotor force in slow and fast labriform swimmers.
    Drucker EG; Lauder GV
    J Exp Biol; 2000 Aug; 203(Pt 16):2379-93. PubMed ID: 10903153
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Theoretical and numerical studies on a five-ray flexible pectoral fin during labriform swimming.
    Weng J; Zhu Y; Du X; Yang G; Hu D
    Bioinspir Biomim; 2019 Dec; 15(1):016007. PubMed ID: 31694000
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pectoral Fin Propulsion Performance Analysis of Robotic Fish with Multiple Degrees of Freedom Based on Burst-and-Coast Swimming Behavior Stroke Ratio.
    Li Z; Li B; Li H; Xia G
    Biomimetics (Basel); 2024 May; 9(5):. PubMed ID: 38786511
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bio-Inspired Propulsion: Towards Understanding the Role of Pectoral Fin Kinematics in Manta-like Swimming.
    Menzer A; Gong Y; Fish FE; Dong H
    Biomimetics (Basel); 2022 Apr; 7(2):. PubMed ID: 35466262
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Locomotion in sturgeon: function of the pectoral fins.
    Wilga CD; Lauder GV
    J Exp Biol; 1999; 202(Pt 18):2413-2432. PubMed ID: 10460730
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Numerical simulation of a pectoral fin during labriform swimming.
    Shoele K; Zhu Q
    J Exp Biol; 2010 Jun; 213(Pt 12):2038-47. PubMed ID: 20511517
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fish biorobotics: kinematics and hydrodynamics of self-propulsion.
    Lauder GV; Anderson EJ; Tangorra J; Madden PG
    J Exp Biol; 2007 Aug; 210(Pt 16):2767-80. PubMed ID: 17690224
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluid dynamics of flapping aquatic flight in the bird wrasse: three-dimensional unsteady computations with fin deformation.
    Ramamurti R; Sandberg WC; Löhner R; Walker JA; Westneat MW
    J Exp Biol; 2002 Oct; 205(Pt 19):2997-3008. PubMed ID: 12200403
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A simplified computational model of possible hydrodynamic interactions between respiratory and swimming-related water flows in labriform-swimming fishes.
    Leung DB; Eldredge JD; Gordon MS
    Bioinspir Biomim; 2021 Mar; 16(3):. PubMed ID: 33434901
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Labriform propulsion in fishes: kinematics of flapping aquatic flight in the bird wrasse Gomphosus varius (Labridae).
    Walker J; Westneat M
    J Exp Biol; 1997; 200(Pt 11):1549-69. PubMed ID: 9319452
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Locomotor forces on a swimming fish: three-dimensional vortex wake dynamics quantified using digital particle image velocimetry.
    Drucker EG; Lauder GV
    J Exp Biol; 1999; 202(Pt 18):2393-2412. PubMed ID: 10460729
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Numerical study on the hydrodynamics of thunniform bio-inspired swimming under self-propulsion.
    Li N; Liu H; Su Y
    PLoS One; 2017; 12(3):e0174740. PubMed ID: 28362836
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-dimensional kinematics and wake structure of the pectoral fins during locomotion in leopard sharks Triakis semifasciata.
    Wilga CD; Lauder GV
    J Exp Biol; 2000 Aug; 203(Pt 15):2261-78. PubMed ID: 10887066
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation on Thrust Force Conversion Method of Oscillating Caudal Fin Based on Wake Vortex Field Structure.
    Ling H; Wang Z
    Appl Bionics Biomech; 2021; 2021():5561268. PubMed ID: 34987603
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Locomotor function of the dorsal fin in teleost fishes: experimental analysis of wake forces in sunfish.
    Drucker EG; Lauder GV
    J Exp Biol; 2001 Sep; 204(Pt 17):2943-58. PubMed ID: 11551984
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional morphology of the pectoral fins in bamboo sharks, Chiloscyllium plagiosum: benthic vs. pelagic station-holding.
    Wilga CD; Lauder GV
    J Morphol; 2001 Sep; 249(3):195-209. PubMed ID: 11517464
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fish can use coordinated fin motions to recapture their own vortex wake energy.
    Tack NB; Du Clos KT; Gemmell BJ
    R Soc Open Sci; 2024 Jan; 11(1):231265. PubMed ID: 38179082
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wake dynamics and fluid forces of turning maneuvers in sunfish.
    Drucker EG; Lauder GV
    J Exp Biol; 2001 Feb; 204(Pt 3):431-42. PubMed ID: 11171296
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.