These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 27478886)

  • 1. A smart multi-pipette for hand-held operation of microfluidic devices.
    Kim B; Hahn YK; You D; Oh S; Choi S
    Analyst; 2016 Oct; 141(20):5753-5758. PubMed ID: 27478886
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An open-source programmable smart pipette for portable cell separation and counting.
    Lee E; Kim B; Choi S
    RSC Adv; 2019 Dec; 9(71):41877-41885. PubMed ID: 35541629
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Smart microfluidic pipette tip enabled by flow-rate insensitive particle ordering.
    Song S; Kim MS; Choi S
    Small; 2014 Oct; 10(20):4123-9. PubMed ID: 24975884
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Correction: A smart multi-pipette for hand-held operation of microfluidic devices.
    Kim B; Hahn YK; You D; Oh S; Choi S
    Analyst; 2017 Jul; 142(15):2846-2847. PubMed ID: 28676868
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Smart Pipette and Microfluidic Pipette Tip for Blood Plasma Separation.
    Kim B; Choi S
    Small; 2016 Jan; 12(2):190-7. PubMed ID: 26568206
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Programmable active droplet generation enabled by integrated pneumatic micropumps.
    Zeng Y; Shin M; Wang T
    Lab Chip; 2013 Jan; 13(2):267-73. PubMed ID: 23160148
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The pumping lid: investigating multi-material 3D printing for equipment-free, programmable generation of positive and negative pressures for microfluidic applications.
    Begolo S; Zhukov DV; Selck DA; Li L; Ismagilov RF
    Lab Chip; 2014 Dec; 14(24):4616-28. PubMed ID: 25231706
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impedance feedback control of microfluidic valves for reliable post processing combinatorial droplet injection.
    Axt B; Hsieh YF; Nalayanda D; Wang TH
    Biomed Microdevices; 2017 Sep; 19(3):61. PubMed ID: 28681238
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of an advanced microfluidic micropipette aspiration device for single cell mechanics studies.
    Lee LM; Lee JW; Chase D; Gebrezgiabhier D; Liu AP
    Biomicrofluidics; 2016 Sep; 10(5):054105. PubMed ID: 27703591
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Droplet-on-a-wristband: chip-to-chip digital microfluidic interfaces between replaceable and flexible electrowetting modules.
    Fan SK; Yang H; Hsu W
    Lab Chip; 2011 Jan; 11(2):343-7. PubMed ID: 20957291
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Membrane-activated microfluidic rotary devices for pumping and mixing.
    Tseng HY; Wang CH; Lin WY; Lee GB
    Biomed Microdevices; 2007 Aug; 9(4):545-54. PubMed ID: 17505888
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On-demand acoustic droplet splitting and steering in a disposable microfluidic chip.
    Park J; Jung JH; Park K; Destgeer G; Ahmed H; Ahmad R; Sung HJ
    Lab Chip; 2018 Jan; 18(3):422-432. PubMed ID: 29220055
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enzyme kinetic measurements using a droplet-based microfluidic system with a concentration gradient.
    Bui MP; Li CA; Han KN; Choo J; Lee EK; Seong GH
    Anal Chem; 2011 Mar; 83(5):1603-8. PubMed ID: 21280615
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Droplet-based microfluidics.
    Sharma S; Srisa-Art M; Scott S; Asthana A; Cass A
    Methods Mol Biol; 2013; 949():207-30. PubMed ID: 23329446
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-precision digital droplet pipetting enabled by a plug-and-play microfluidic pipetting chip.
    Mao Y; Pan Y; Li X; Li B; Chu J; Pan T
    Lab Chip; 2018 Sep; 18(18):2720-2729. PubMed ID: 30014071
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A suspending-droplet mode paper-based microfluidic platform for low-cost, rapid, and convenient detection of lead(II) ions in liquid solution.
    Sun H; Li W; Dong ZZ; Hu C; Leung CH; Ma DL; Ren K
    Biosens Bioelectron; 2018 Jan; 99():361-367. PubMed ID: 28800508
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Passive Picoinjection Enables Controlled Crystallization in a Droplet Microfluidic Device.
    Li S; Zeng M; Gaule T; McPherson MJ; Meldrum FC
    Small; 2017 Nov; 13(41):. PubMed ID: 28873281
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Desktop aligner for fabrication of multilayer microfluidic devices.
    Li X; Yu ZT; Geraldo D; Weng S; Alve N; Dun W; Kini A; Patel K; Shu R; Zhang F; Li G; Jin Q; Fu J
    Rev Sci Instrum; 2015 Jul; 86(7):075008. PubMed ID: 26233409
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nano-liter droplet libraries from a pipette: step emulsificator that stabilizes droplet volume against variation in flow rate.
    Dutka F; Opalski AS; Garstecki P
    Lab Chip; 2016 May; 16(11):2044-9. PubMed ID: 27161389
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Smart hydrogels as storage elements with dispensing functionality in discontinuous microfluidic systems.
    Haefner S; Frank P; Elstner M; Nowak J; Odenbach S; Richter A
    Lab Chip; 2016 Oct; 16(20):3977-3989. PubMed ID: 27713982
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.