These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 27479006)

  • 1. Enabling N-to-C Ser/Thr Ligation for Convergent Protein Synthesis via Combining Chemical Ligation Approaches.
    Lee CL; Liu H; Wong CT; Chow HY; Li X
    J Am Chem Soc; 2016 Aug; 138(33):10477-84. PubMed ID: 27479006
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Serine/Threonine Ligation: Origin, Mechanistic Aspects, and Applications.
    Liu H; Li X
    Acc Chem Res; 2018 Jul; 51(7):1643-1655. PubMed ID: 29979577
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Serine/threonine ligation for the chemical synthesis of proteins.
    Lee CL; Li X
    Curr Opin Chem Biol; 2014 Oct; 22():108-14. PubMed ID: 25299572
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The New Salicylaldehyde
    Huang DL; Li Y; Liang J; Yu L; Xue M; Cao XX; Xiao B; Tian CL; Liu L; Zheng JS
    J Am Chem Soc; 2020 May; 142(19):8790-8799. PubMed ID: 32286828
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthetic cysteine surrogates used in native chemical ligation.
    Wong CT; Tung CL; Li X
    Mol Biosyst; 2013 May; 9(5):826-33. PubMed ID: 23302767
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Salicylaldehyde ester-induced chemoselective peptide ligations: enabling generation of natural peptidic linkages at the serine/threonine sites.
    Li X; Lam HY; Zhang Y; Chan CK
    Org Lett; 2010 Apr; 12(8):1724-7. PubMed ID: 20232847
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An oxazetidine amino acid for chemical protein synthesis by rapid, serine-forming ligations.
    Pusterla I; Bode JW
    Nat Chem; 2015 Aug; 7(8):668-72. PubMed ID: 26201744
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New chemistries for chemoselective peptide ligations and the total synthesis of proteins.
    Harmand TJ; Murar CE; Bode JW
    Curr Opin Chem Biol; 2014 Oct; 22():115-21. PubMed ID: 25299573
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxidation and Phenolysis of Peptide/Protein C-Terminal Hydrazides Afford Salicylaldehyde Ester Surrogates for Chemical Protein Synthesis.
    Lin S; Mo Z; Wang P; He C
    J Am Chem Soc; 2023 Aug; 145(30):16843-16851. PubMed ID: 37470345
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mimicking reverse protein splicing by three-segment tandem peptide ligation.
    Tam JP; Eom KD
    Protein Pept Lett; 2005 Nov; 12(8):743-9. PubMed ID: 16305543
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient substitution reaction from cysteine to the serine residue of glycosylated polypeptide: repetitive peptide segment ligation strategy and the synthesis of glycosylated tetracontapeptide having acid labile sialyl-T(N) antigens.
    Okamoto R; Souma S; Kajihara Y
    J Org Chem; 2009 Mar; 74(6):2494-501. PubMed ID: 19236026
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Realizing serine/threonine ligation: scope and limitations and mechanistic implication thereof.
    Wong CT; Li T; Lam HY; Zhang Y; Li X
    Front Chem; 2014; 2():28. PubMed ID: 24904921
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Advances in Native Chemical Ligation-Desulfurization: A Powerful Strategy for Peptide and Protein Synthesis.
    Jin K; Li X
    Chemistry; 2018 Nov; 24(66):17397-17404. PubMed ID: 29947435
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxidative Deselenization of Selenocysteine: Applications for Programmed Ligation at Serine.
    Malins LR; Mitchell NJ; McGowan S; Payne RJ
    Angew Chem Int Ed Engl; 2015 Oct; 54(43):12716-21. PubMed ID: 26384718
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel post-ligation thioesterification device enables peptide ligation in the N to C direction: synthetic study of human glycodelin.
    Takenouchi T; Katayama H; Nakahara Y; Nakahara Y; Hojo H
    J Pept Sci; 2014 Jan; 20(1):55-61. PubMed ID: 24357164
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protein synthesis by native chemical ligation: expanded scope by using straightforward methodology.
    Hackeng TM; Griffin JH; Dawson PE
    Proc Natl Acad Sci U S A; 1999 Aug; 96(18):10068-73. PubMed ID: 10468563
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Semisynthesis of peptoid-protein hybrids by chemical ligation at serine.
    Levine PM; Craven TW; Bonneau R; Kirshenbaum K
    Org Lett; 2014 Jan; 16(2):512-5. PubMed ID: 24393000
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tandem ligation of unprotected peptides through thiaprolyl and cysteinyl bonds in water.
    Tam JP; Yu Q; Yang JL
    J Am Chem Soc; 2001 Mar; 123(11):2487-94. PubMed ID: 11456916
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemical Synthesis of Proteins with Base-Labile Posttranslational Modifications Enabled by a Boc-SPPS Based General Strategy Towards Peptide C-Terminal Salicylaldehyde Esters.
    Ma W; Wu H; Liu S; Wei T; Li XD; Liu H; Li X
    Angew Chem Int Ed Engl; 2023 Jan; 62(1):e202214053. PubMed ID: 36344442
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Traceless chemical ligation from S-, O-, and N-acyl isopeptides.
    Panda SS; Hall CD; Oliferenko AA; Katritzky AR
    Acc Chem Res; 2014 Apr; 47(4):1076-87. PubMed ID: 24617996
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.