These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 27479028)
1. Free Energies of Cavity and Noncavity Hydrated Electrons Near the Instantaneous Air/Water Interface. Casey JR; Schwartz BJ; Glover WJ J Phys Chem Lett; 2016 Aug; 7(16):3192-8. PubMed ID: 27479028 [TBL] [Abstract][Full Text] [Related]
2. Resonance Raman and temperature-dependent electronic absorption spectra of cavity and noncavity models of the hydrated electron. Casey JR; Larsen RE; Schwartz BJ Proc Natl Acad Sci U S A; 2013 Feb; 110(8):2712-7. PubMed ID: 23382233 [TBL] [Abstract][Full Text] [Related]
3. The Fluxional Nature of the Hydrated Electron: Energy and Entropy Contributions to Aqueous Electron Free Energies. Glover WJ; Schwartz BJ J Chem Theory Comput; 2020 Feb; 16(2):1263-1270. PubMed ID: 31914315 [TBL] [Abstract][Full Text] [Related]
5. Short-Range Electron Correlation Stabilizes Noncavity Solvation of the Hydrated Electron. Glover WJ; Schwartz BJ J Chem Theory Comput; 2016 Oct; 12(10):5117-5131. PubMed ID: 27576177 [TBL] [Abstract][Full Text] [Related]
6. Hydrated Electrons in Water Clusters: Inside or Outside, Cavity or Noncavity? Turi L J Chem Theory Comput; 2015 Apr; 11(4):1745-55. PubMed ID: 26889512 [TBL] [Abstract][Full Text] [Related]
8. Understanding the Temperature Dependence and Finite Size Effects in Ab Initio MD Simulations of the Hydrated Electron. Park SJ; Schwartz BJ J Chem Theory Comput; 2022 Aug; 18(8):4973-4982. PubMed ID: 35834750 [TBL] [Abstract][Full Text] [Related]
9. Time-Resolved Photoelectron Spectroscopy of the Hydrated Electron: Comparing Cavity and Noncavity Models to Experiment. Zho CC; Schwartz BJ J Phys Chem B; 2016 Dec; 120(49):12604-12614. PubMed ID: 27973828 [TBL] [Abstract][Full Text] [Related]
10. The structure of the hydrated electron. Part 2. A mixed quantum/classical molecular dynamics embedded cluster density functional theory: single-excitation configuration interaction study. Shkrob IA; Glover WJ; Larsen RE; Schwartz BJ J Phys Chem A; 2007 Jun; 111(24):5232-43. PubMed ID: 17530823 [TBL] [Abstract][Full Text] [Related]
11. Structure, dynamics, and reactivity of hydrated electrons by ab initio molecular dynamics. Marsalek O; Uhlig F; VandeVondele J; Jungwirth P Acc Chem Res; 2012 Jan; 45(1):23-32. PubMed ID: 21899274 [TBL] [Abstract][Full Text] [Related]
12. To be or not to be in a cavity: the hydrated electron dilemma. Casey JR; Kahros A; Schwartz BJ J Phys Chem B; 2013 Nov; 117(46):14173-82. PubMed ID: 24160853 [TBL] [Abstract][Full Text] [Related]
13. Temperature dependence of the hydrated electron's excited-state relaxation. II. Elucidating the relaxation mechanism through ultrafast transient absorption and stimulated emission spectroscopy. Farr EP; Zho CC; Challa JR; Schwartz BJ J Chem Phys; 2017 Aug; 147(7):074504. PubMed ID: 28830177 [TBL] [Abstract][Full Text] [Related]
14. Nonadiabatic molecular dynamics simulations of correlated electrons in solution. 2. A prediction for the observation of hydrated dielectrons with pump-probe spectroscopy. Larsen RE; Schwartz BJ J Phys Chem B; 2006 May; 110(19):9692-7. PubMed ID: 16686520 [TBL] [Abstract][Full Text] [Related]
15. How Water-Ion Interactions Control the Formation of Hydrated Electron:Sodium Cation Contact Pairs. Park SJ; Narvaez WA; Schwartz BJ J Phys Chem B; 2021 Dec; 125(47):13027-13040. PubMed ID: 34806385 [TBL] [Abstract][Full Text] [Related]
16. Temperature dependence of the hydrated electron's excited-state relaxation. I. Simulation predictions of resonance Raman and pump-probe transient absorption spectra of cavity and non-cavity models. Zho CC; Farr EP; Glover WJ; Schwartz BJ J Chem Phys; 2017 Aug; 147(7):074503. PubMed ID: 28830174 [TBL] [Abstract][Full Text] [Related]
17. Does the hydrated electron occupy a cavity? Larsen RE; Glover WJ; Schwartz BJ Science; 2010 Jul; 329(5987):65-9. PubMed ID: 20595609 [TBL] [Abstract][Full Text] [Related]