These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 27479028)

  • 21. Free energetics and the role of water in the permeation of methyl guanidinium across the bilayer-water interface: insights from molecular dynamics simulations using charge equilibration potentials.
    Ou S; Lucas TR; Zhong Y; Bauer BA; Hu Y; Patel S
    J Phys Chem B; 2013 Apr; 117(13):3578-92. PubMed ID: 23409975
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The role of solvent structure in the absorption spectrum of solvated electrons: mixed quantum/classical simulations in tetrahydrofuran.
    Bedard-Hearn MJ; Larsen RE; Schwartz BJ
    J Chem Phys; 2005 Apr; 122(13):134506. PubMed ID: 15847480
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Free energy profiles of amino acid side chain analogs near water-vapor interface obtained via MD simulations.
    Shaytan AK; Ivanov VA; Shaitan KV; Khokhlov AR
    J Comput Chem; 2010 Jan; 31(1):204-16. PubMed ID: 19421988
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hydrated Electrons in High-Concentration Electrolytes Interact with Multiple Cations: A Simulation Study.
    Narvaez WA; Park SJ; Schwartz BJ
    J Phys Chem B; 2022 May; 126(20):3748-3757. PubMed ID: 35544344
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hydration dynamics in water clusters via quantum molecular dynamics simulations.
    Turi L
    J Chem Phys; 2014 May; 140(20):204317. PubMed ID: 24880290
    [TBL] [Abstract][Full Text] [Related]  

  • 26. What Coordinate Best Describes the Affinity of the Hydrated Excess Proton for the Air-Water Interface?
    Li Z; Li C; Wang Z; Voth GA
    J Phys Chem B; 2020 Jun; 124(24):5039-5046. PubMed ID: 32426982
    [TBL] [Abstract][Full Text] [Related]  

  • 27. On NO3--H2O interactions in aqueous solutions and at interfaces.
    Dang LX; Chang TM; Roeselova M; Garrett BC; Tobias DJ
    J Chem Phys; 2006 Feb; 124(6):66101. PubMed ID: 16483244
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Full configuration interaction computer simulation study of the thermodynamic and kinetic stability of hydrated dielectrons.
    Larsen RE; Schwartz BJ
    J Phys Chem B; 2006 Jan; 110(2):1006-14. PubMed ID: 16471635
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A Simple ab Initio Model for the Hydrated Electron That Matches Experiment.
    Kumar A; Walker JA; Bartels DM; Sevilla MD
    J Phys Chem A; 2015 Aug; 119(34):9148-59. PubMed ID: 26275103
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Solvated electrons at the water-air interface: surface versus bulk signal in low kinetic energy photoelectron spectroscopy.
    Buchner F; Schultz T; Lübcke A
    Phys Chem Chem Phys; 2012 Apr; 14(16):5837-42. PubMed ID: 22414952
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The Hydrated Electron at the Surface of Neat Liquid Water Appears To Be Indistinguishable from the Bulk Species.
    Coons MP; You ZQ; Herbert JM
    J Am Chem Soc; 2016 Aug; 138(34):10879-86. PubMed ID: 27505354
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Partially Hydrated Electrons at the Air/Water Interface Observed by UV-Excited Time-Resolved Heterodyne-Detected Vibrational Sum Frequency Generation Spectroscopy.
    Matsuzaki K; Kusaka R; Nihonyanagi S; Yamaguchi S; Nagata T; Tahara T
    J Am Chem Soc; 2016 Jun; 138(24):7551-7. PubMed ID: 27281547
    [TBL] [Abstract][Full Text] [Related]  

  • 33. On the applicability of one- and many-electron quantum chemistry models for hydrated electron clusters.
    Turi L
    J Chem Phys; 2016 Apr; 144(15):154311. PubMed ID: 27389224
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The roles of electronic exchange and correlation in charge-transfer- to-solvent dynamics: Many-electron nonadiabatic mixed quantum/classical simulations of photoexcited sodium anions in the condensed phase.
    Glover WJ; Larsen RE; Schwartz BJ
    J Chem Phys; 2008 Oct; 129(16):164505. PubMed ID: 19045282
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Free energy partitioning analysis of the driving forces that determine ion density profiles near the water liquid-vapor interface.
    Arslanargin A; Beck TL
    J Chem Phys; 2012 Mar; 136(10):104503. PubMed ID: 22423844
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Hydrated Electron Transfer to Nucleobases in Aqueous Solutions Revealed by Ab Initio Molecular Dynamics Simulations.
    Zhao J; Wang M; Fu A; Yang H; Bu Y
    Chemphyschem; 2015 Aug; 16(11):2348-56. PubMed ID: 26017360
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Quantum chemistry in arbitrary dielectric environments: Theory and implementation of nonequilibrium Poisson boundary conditions and application to compute vertical ionization energies at the air/water interface.
    Coons MP; Herbert JM
    J Chem Phys; 2018 Jun; 148(22):222834. PubMed ID: 29907040
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Unraveling the Complex Nature of the Hydrated Electron.
    Uhlig F; Marsalek O; Jungwirth P
    J Phys Chem Lett; 2012 Oct; 3(20):3071-5. PubMed ID: 26292252
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A one-electron model for the aqueous electron that includes many-body electron-water polarization: Bulk equilibrium structure, vertical electron binding energy, and optical absorption spectrum.
    Jacobson LD; Herbert JM
    J Chem Phys; 2010 Oct; 133(15):154506. PubMed ID: 20969402
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Free energy of solvation of simple ions: molecular-dynamics study of solvation of Cl- and Na+ in the ice/water interface.
    Smith EJ; Bryk T; Haymet AD
    J Chem Phys; 2005 Jul; 123(3):34706. PubMed ID: 16080754
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.