These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 27479028)
41. Trap-Seeking or Trap-Digging? Photoinjection of Hydrated Electrons into Aqueous NaCl Solutions. Narvaez WA; Wu EC; Park SJ; Gomez M; Schwartz BJ J Phys Chem Lett; 2022 Sep; 13(37):8653-8659. PubMed ID: 36083839 [TBL] [Abstract][Full Text] [Related]
42. Electron at the Surface of Water: Dehydrated or Not? Uhlig F; Marsalek O; Jungwirth P J Phys Chem Lett; 2013 Jan; 4(2):338-43. PubMed ID: 26283445 [TBL] [Abstract][Full Text] [Related]
43. The curious case of the hydrated proton. Knight C; Voth GA Acc Chem Res; 2012 Jan; 45(1):101-9. PubMed ID: 21859071 [TBL] [Abstract][Full Text] [Related]
44. Investigation of the Failure of Marcus Theory for Hydrated Electron Reactions. Neupane P; Katiyar A; Bartels DM; Thompson WH J Phys Chem Lett; 2022 Oct; 13(39):8971-8977. PubMed ID: 36136966 [TBL] [Abstract][Full Text] [Related]
45. The Hydrated Electron. Herbert JM; Coons MP Annu Rev Phys Chem; 2017 May; 68():447-472. PubMed ID: 28375692 [TBL] [Abstract][Full Text] [Related]
46. Revisiting the hexane-water interface via molecular dynamics simulations using nonadditive alkane-water potentials. Patel SA; Brooks CL J Chem Phys; 2006 May; 124(20):204706. PubMed ID: 16774363 [TBL] [Abstract][Full Text] [Related]
47. On the electron affinity of cytosine in bulk water and at hydrophobic aqueous interfaces. Vöhringer-Martinez E; Dörner C; Abel B J Mol Model; 2014 Oct; 20(10):2453. PubMed ID: 25300994 [TBL] [Abstract][Full Text] [Related]
48. Accuracy of the microsolvation-continuum approach in computing the pK(a) and the free energies of formation of phosphate species in aqueous solution. Tang E; Di Tommaso D; de Leeuw NH Phys Chem Chem Phys; 2010 Nov; 12(41):13804-15. PubMed ID: 20862433 [TBL] [Abstract][Full Text] [Related]
49. Toward a unified picture of the water self-ions at the air-water interface: a density functional theory perspective. Baer MD; Kuo IF; Tobias DJ; Mundy CJ J Phys Chem B; 2014 Jul; 118(28):8364-72. PubMed ID: 24762096 [TBL] [Abstract][Full Text] [Related]
50. An improved multistate empirical valence bond model for aqueous proton solvation and transport. Wu Y; Chen H; Wang F; Paesani F; Voth GA J Phys Chem B; 2008 Jan; 112(2):467-82. PubMed ID: 17999484 [TBL] [Abstract][Full Text] [Related]
51. Molecular dynamics simulations of small halogenated organics at the air-water interface: implications in water treatment and atmospheric chemistry. Habartová A; Valsaraj KT; Roeselová M J Phys Chem A; 2013 Sep; 117(38):9205-15. PubMed ID: 23971412 [TBL] [Abstract][Full Text] [Related]
52. Molecular dynamics simulations of atmospheric oxidants at the air-water interface: solvation and accommodation of OH and O3. Vieceli J; Roeselova M; Potter N; Dang LX; Garrett BC; Tobias DJ J Phys Chem B; 2005 Aug; 109(33):15876-92. PubMed ID: 16853017 [TBL] [Abstract][Full Text] [Related]
53. Theoretical characterization of four distinct isomer types in hydrated-electron clusters, and proposed assignments for photoelectron spectra of water cluster anions. Jacobson LD; Herbert JM J Am Chem Soc; 2011 Dec; 133(49):19889-99. PubMed ID: 22026436 [TBL] [Abstract][Full Text] [Related]
54. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. Marenich AV; Cramer CJ; Truhlar DG J Phys Chem B; 2009 May; 113(18):6378-96. PubMed ID: 19366259 [TBL] [Abstract][Full Text] [Related]
55. Computation of the free energy change associated with one-electron reduction of coenzyme immersed in water: a novel approach within the framework of the quantum mechanical/molecular mechanical method combined with the theory of energy representation. Takahashi H; Ohno H; Kishi R; Nakano M; Matubayasi N J Chem Phys; 2008 Nov; 129(20):205103. PubMed ID: 19045881 [TBL] [Abstract][Full Text] [Related]
56. Molecular mechanism of CO2 and SO2 molecules binding to the air/liquid interface of 1-butyl-3-methylimidazolium tetrafluoroborate ionic liquid: a molecular dynamics study with polarizable potential models. Wick CD; Chang TM; Dang LX J Phys Chem B; 2010 Nov; 114(46):14965-71. PubMed ID: 20882993 [TBL] [Abstract][Full Text] [Related]
57. Propensity of Hydrated Excess Protons and Hydroxide Anions for the Air-Water Interface. Tse YL; Chen C; Lindberg GE; Kumar R; Voth GA J Am Chem Soc; 2015 Oct; 137(39):12610-6. PubMed ID: 26366480 [TBL] [Abstract][Full Text] [Related]
58. The hydrated electron: a seemingly familiar chemical and biological transient. Siefermann KR; Abel B Angew Chem Int Ed Engl; 2011 May; 50(23):5264-72. PubMed ID: 21574218 [TBL] [Abstract][Full Text] [Related]
59. Electronic states at the water/air interface. Rodriguez J; Laria D J Phys Chem B; 2005 Apr; 109(14):6473-8. PubMed ID: 16851725 [TBL] [Abstract][Full Text] [Related]