These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 27479028)

  • 61. SU-E-T-489: Quantum versus Classical Trajectory Monte Carlo Simulations of Low Energy Electron Transport.
    Thomson R; Kawrakow I
    Med Phys; 2012 Jun; 39(6Part17):3817-3818. PubMed ID: 28517446
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Charge transfer effects of ions at the liquid water/vapor interface.
    Soniat M; Rick SW
    J Chem Phys; 2014 May; 140(18):184703. PubMed ID: 24832295
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Design of surface active soluble peptide molecules at the air/water interface.
    Gu C; Lustig S; Jackson C; Trout BL
    J Phys Chem B; 2008 Mar; 112(10):2970-80. PubMed ID: 18271570
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Computational investigation of the first solvation shell structure of interfacial and bulk aqueous chloride and iodide ions.
    Wick CD; Xantheas SS
    J Phys Chem B; 2009 Apr; 113(13):4141-6. PubMed ID: 19014185
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Nucleophilic substitution reactions at liquid/liquid interfaces: molecular dynamics simulation of a model S(N)1 dissociation reaction at the water/carbon tetrachloride interface.
    Winter N; Benjamin I
    J Phys Chem B; 2005 Sep; 109(34):16421-8. PubMed ID: 16853087
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Temperature effect on the absorption spectrum of the hydrated electron paired with a lithium cation in deuterated water.
    Lin M; Kumagai Y; Lampre I; Coudert FX; Muroya Y; Boutin A; Mostafavi M; Katsumura Y
    J Phys Chem A; 2007 May; 111(18):3548-53. PubMed ID: 17429955
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Free energies of binding from large-scale first-principles quantum mechanical calculations: application to ligand hydration energies.
    Fox SJ; Pittock C; Tautermann CS; Fox T; Christ C; Malcolm NO; Essex JW; Skylaris CK
    J Phys Chem B; 2013 Aug; 117(32):9478-85. PubMed ID: 23841453
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Excess electron relaxation dynamics at water/air interfaces.
    Madarász A; Rossky PJ; Turi L
    J Chem Phys; 2007 Jun; 126(23):234707. PubMed ID: 17600435
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Cavity formation at metal-water interfaces.
    Eggert T; Hörmann NG; Reuter K
    J Chem Phys; 2023 Nov; 159(19):. PubMed ID: 37966001
    [TBL] [Abstract][Full Text] [Related]  

  • 70. The CHARMM-TURBOMOLE interface for efficient and accurate QM/MM molecular dynamics, free energies, and excited state properties.
    Riahi S; Rowley CN
    J Comput Chem; 2014 Oct; 35(28):2076-86. PubMed ID: 25178266
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Amino acids at water-vapor interfaces: surface activity and orientational ordering.
    Vöhringer-Martinez E; Toro-Labbé A
    J Phys Chem B; 2010 Oct; 114(40):13005-10. PubMed ID: 20860377
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Solvation of hydrogen sulfide in liquid water and at the water-vapor interface using a polarizable force field.
    Riahi S; Rowley CN
    J Phys Chem B; 2014 Feb; 118(5):1373-80. PubMed ID: 24498909
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Free energy of solvation from molecular dynamics simulation applying Voronoi-Delaunay triangulation to the cavity creation.
    Goncalves PF; Stassen H
    J Chem Phys; 2005 Dec; 123(21):214109. PubMed ID: 16356041
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Thermodynamics of iodide adsorption at the instantaneous air-water interface.
    Stern AC; Baer MD; Mundy CJ; Tobias DJ
    J Chem Phys; 2013 Mar; 138(11):114709. PubMed ID: 23534655
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Reactivity of aldehydes at the air-water interface. Insights from molecular dynamics simulations and ab initio calculations.
    Martins-Costa MT; García-Prieto FF; Ruiz-López MF
    Org Biomol Chem; 2015 Feb; 13(6):1673-9. PubMed ID: 25451554
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Pulse radiolysis of supercritical water. 3. Spectrum and thermodynamics of the hydrated electron.
    Bartels DM; Takahashi K; Cline JA; Marin TW; Jonah CD
    J Phys Chem A; 2005 Feb; 109(7):1299-307. PubMed ID: 16833444
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Dispersion self-free energies and interaction free energies of finite-sized ions in salt solutions.
    Boström M; Ninham BW
    Langmuir; 2004 Aug; 20(18):7569-74. PubMed ID: 15323503
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Exploring the behaviour of the hydrated excess proton at hydrophobic interfaces.
    Kumar R; Knight C; Voth GA
    Faraday Discuss; 2013; 167():263-78. PubMed ID: 24640495
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Direct observation of the collapse of the delocalized excess electron in water.
    Savolainen J; Uhlig F; Ahmed S; Hamm P; Jungwirth P
    Nat Chem; 2014 Aug; 6(8):697-701. PubMed ID: 25054939
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Charge Transfer to Solvent Dynamics at the Ambient Water/Air Interface.
    Nowakowski PJ; Woods DA; Verlet JRR
    J Phys Chem Lett; 2016 Oct; 7(20):4079-4085. PubMed ID: 27684095
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.